Микроконтактная спектроскопия

Микроконтактная спектроскопия (МКС) (англ. point contact spectroscopy) — метод спектроскопии элементарных возбуждений в металлах с помощью точечных контактов, размер (диаметр) которых меньше длины энергетической релаксации (пробега) электронов. Предложен в 1974 И. К. Янсоном в Физико-техническом институте низких температур НАН Украины (г. Харьков) при измерении вольт-амперных характеристик (ВАХ) туннельных переходов металл-диэлектрик-металл, содержащих металлические (короткие) микромостики в барьерном слое [1]. Теория МКС была построена И. О. Куликом, А. Н. Омельянчуком и Р. И. Шехтером [2].

Качественное объяснение

Сопротивление контакта между чистыми металлами, , в пределе  ( — диаметр контакта,  — (наименьшая) длина свободного пробега) описывается формулой Шарвина [3]

 ,

и не зависит от длины свободного пробега ( — плотность электронов,  — фермиевский импульс). Микроконтактная спектроскопия основана на изучении поправок к , обусловленных конечной величиной электрон-фононной длины свободного пробега и её зависимостью от избыточной энергии электронов

где  — скорость электрона на поверхности Ферми,  — температура,  — функция электрон-фононного взаимодействия (ЭФВ). Приближенное выражение для сопротивления контакта с учётом поправки, связанной с электрон-фононным рассеянием может быть записано в следующем виде (формула Векслера):[4]

где  — ток через контакт,  — числовой коэффициент,  — напряжение, приложенное к контакту,  — усреднённая длина свободного пробега

Первая производная тока по напряжению приближённо (при ) равна:

Таким образом, вторая производная ВАХ по напряжению пропорциональна спектральной функции ЭФВ [5]:

Теория

Перераспределение электронов по энергиям

МКС обусловлена энергетической дупликацией неравновесных носителей заряда (электронов) в микроконтактах при низких температурах () — явлением, которое заключается в образовании под действием электрического смещения двух групп неравновесных носителей, движущихся через контакт в противоположных направлениях. Максимальные энергии для каждой из групп отличаются на величину . Наблюдение и теоретическое объяснение этого явления было зарегистрировано, как открытие «Диплом № 328. Явление перераспределения энергии носителей заряда в металлических микроконтактах при низких температурах» (авторы Ю. В. Шарвин, И. К. Янсон, И. О. Кулик, А. Н. Омельянчук, Р. И. Шехтер) [6]. Релаксация такого распределения приводит к нелинейной ВАХ, первая производная которой пропорциональна частоте неупругого рассеяния электронов, а вторая — микроконтактной функции взаимодействия электронов с другими квазичастицами с энергией ().

Вычисление микроконтактного спектра

Зависимость тока от напряжения может быть вычислена с помощью решения кинетического уравнения Больцмана для квазиклассической функции распределения с граничным условием её равновесности вдали от контакта. Неупругое взаимодействие электронов с фононами (или другими квазичастицами) учитывается с помощью соответствующего интеграла столкновений. В рассматриваемом случае решение может быть получено с помощью теории возмущений по константе электрон-фононного взаимодействия. В нулевом приближении для баллистического контакта задача имеет точное решение, а сопротивление контакта равно сопротивлению Шарвина.

В случае электрон-фононного взаимодействия при и [2]

(1)

где , — микроконтактная функция ЭФВ. Последняя отличается от туннельной функции ЭФВ (функции Элиашберга) наличием весового множителя, учитывающий кинематику процессов рассеяния электронов в микроконтакте определённой формы. Микроконтактная функция ЭФВ имеет вид [2]

где  — квадрат модуля матричного элемента перехода электронов из состояния с импульсом в состояние с импульсом при рассеянии на фононе с энергией ,  — геометрический фактор Кулика, нормированный на среднее по углам значение. Интегрирование проводится по состояниям на Ферми поверхности, - элемент площади ферми-поверхности, - абсолютная величина скорости электрона с импульсом . Микроконтактная функция ЭФВ учитывает кинематику процессов рассеяния в контактах четко определённой геометрии, а также упругое рассеяние электронов на статических дефектах в приконтактных области. По аналогии с другими функция ЭФВ определяется интегральным параметром ЭФВ в микроконтакте λ

,

который по порядку величины равен другим параметрам ЭФВ в данном металле. Выражение (1) имеет аналогичный вид и для взаимодействия электронов с магнонами, экситонами и другими квазичастицами.

Эксперимент

Основной технической проблемой измерения микроконтактного спектра является создание ситуации, когда диаметр контакта достаточно мал, . Как правило, для реализации этого неравенства необходима низкая температура (температура жидкого гелия) и контакты диаметром не более 10-100 Ǻ. Микроконтактные спектры имеют наибольшую интенсивность для баллистических контактов (между чистыми металлами). Распространёнными методами создания контактов для МКС являются: Получение микрозакороток в туннельном барьере между двумя металлами. Контакт типа «игла-наковальня», который создаётся двумя электродами, один из которых заточен в виде острия с радиусом кривизны порядка нескольких микрометров, а другой имеет плоскую поверхность. Прижимные контакты, образующиеся в месте соприкосновения двух электродов (например, в форме цилиндров или брусков, расположенных крест-накрест) при их сдвиге друг относительно друга.[5]

Микроконтактные спектры большинства металлов можно найти в атласах [3,5].

Круг объектов, которые изучают методом МКС, содержит металлы, различные интерметаллические сплавы и соединения с переменной валентностью, системы с тяжелыми фермионами, Кондо-решётки и Кондо-примеси, низкоразмерные проводники, традиционные и высокотемпературные сверхпроводники и другие актуальные материалы.[7][8][9][10][11]

Литература

  1. Физика твердого тела: энциклопедический словарь / Гл. ред. В. Г. Барьяхтар. — Киев: Наукова думка, 1996. — Т. 1. — С. 560. — 656 с. — ISBN 5120040632.
  2. Yu. G. Naidyuk, I. K. Yanson, Point-contact spectroscopy — Springer, New-York, 2005. ISBN 978-0-387-21235-7
  3. A. V. Khotkevich, I. K. Yanson, Atlas of Point-Contact Spectra of Electron-Phonon Interaction in Metals — Kluwer Academic Publishers, Boston, 1995. ISBN 978-0-7923-9526-3
  4. Ю. Г. Найдюк, И. К. Янсон, Микроконтактная спектроскопия, Изд. Знание, Москва, 1989. (http://arxiv.org/abs/physics/0312016 )
  5. И. К. Янсон, А. В. Хоткевич. Атлас микроконтактных спектров электрон-фононного взаимодействия в металлах. — Киев : Наукова думка, 1986. — С. 143.

Примечания

  1. Янсон И. К. Нелинейные эффекты в электропроводности точечных контактов и электрон-фононное взаимодействие в нормальных металлах // Журн. эксперим. и теорет.физики. — 1974, Т. 66, вып. 3. — С. 1035—1050
  2. Кулик И. О., Омельянчук А. Н., Шехтер Р. И. Электропроводность точечных микроконтактов и спектроскопия фононов и примесей в нормальных металлах // Физика низких температур. — 1977. — № 3, вып. 12. — С. 1543—1558.
  3. Шарвин Ю. В. Об одном возможном методе исследования поверхности Ферми. ЖЭТФ, 1965, 48, вып. 3, с. 984—985.
  4. Wexler G. The size effect and nonlocal Boltzmann transport equation in orifice and disk geometry. — Proc. Phys. Soc., 1966, 89, N 566, р. 927—941.
  5. Янсон И. К. МИКРОКОНТАКТНАЯ СПЕКТРОСКОПИЯ ЭЛЕКТРОН-ФОНОННОГО ВЗАИМОДЕЙСТВИЯ В ЧИСТЫХ МЕТАЛЛАХ (Обзор), Физики низких температур, Т.9, вып.7, С. 676—709 (1983)
  6. НАУКОВІ ВІДКРИТТЯ УЧЕНИХ УКРАЇНИ, ЗРОБЛЕНІ ЗА ПЕРІОД 1938—1990 рр. (державна реєстрація). Наука та інновації. 2008. Т 4. No 5. С. 39—62.
  7. A. G. M. Jansen, A. P. van Gelder and P. Wyder. Point-contact spectroscopy in metals // J. Phys. C: Solid State Phys.. — 1980. Т. 13. С. 6073. doi:10.1088/0022-3719/13/33/009.
  8. Wei-Cheng Lee and Laura H Green. Recent progress of probing correlated electron states by point contact spectroscopy // Rep. Prog. Phys.. — 2016. Т. 79. С. 094502. doi:10.1088/0034-4885/79/9/094502. arXiv:1512.02660. PMID 27533341.
  9. F. Giubileo, F. Bobba, M. Gombos, S. Uthayakumar, A. Vecchione, A. I. Akimenko and A. M. Cucolo Point Contact Spectroscopy on RuSr2GdCu2O8 . International Journal of Modern Physics B Vol. 17, No. 18/20, pp. 3525-3529 (2003)
  10. R. Escudero F. Morales Point contact spectroscopy of crystals: Evidence of a CDW gap related to the martensitic transition. Solid State Communications Volume 150, Issues 15-16, April 2010, Pages 715—719
  11. N J Lambert, A R Nogaret, S Sassine, J C Portal, H E Beere, D A Ritchie. Point contact spectroscopy of magnetic edge states. International Journal of Modern Physics B, V. 21, No. 8-9, P. 1507—1510 (2007)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.