Метрический дифференциал

Метрический дифференциал — обобщение понятия производной на (липшицевы) отображения из евклидова пространства в произвольное метрическое пространство. Впервые рассмотрен Берндом Киркхаймом[1].

Метрический дифференциал отображения в точке является нормой на и обычно обозначается .

Определение

Метрический дифференциал отображения в точке определяется как норма на такая, что

где обозначает расстояние между точками и по норме .

Свойства

  • Для метрического дифференциала выполняется аналог теоремы Радемахера — если липшицевское, то метрический дифференциал определён почти в каждой точке области определения.
    • Прямое обобщение теоремы Радемахера невозможно, поскольку метрическое пространство не обладает линейной структурой, требуемой для дифференциала. Даже в случае банахова пространства заключение самой теоремы неверно — например, отображение , определённое как индикатор , не имеет производную ни в одной точке, несмотря на то, что отображение липшицево и даже сохраняет расстояния.

Примечания

  1. Bernd Kirchheim. Rectifiable metric spaces: local structure and regularity of the Hausdorff measure (англ.) // Proc. Am. Math. Soc. : journal. — 1994. Vol. 121. P. 113—124.

Ссылки

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.