Метод Адамса

Ме́тод А́дамса — конечноразностный многошаговый метод численного интегрирования обыкновенных дифференциальных уравнений первого порядка. В отличие от метода Рунге-Кутты использует для вычисления очередного значения искомого решения не одно, а несколько значений, которые уже вычислены в предыдущих точках.

Назван по имени предложившего его в 1855 году английского астронома Джона К. Адамса.

Определение

Пусть дана система дифференциальных уравнений первого порядка

,

для которой надо найти решение на сетке с постоянным шагом . Расчётные формулы метода Адамса для решения этой системы имеют вид:[1]

a) экстраполяционные — метод Адамса-Башфорта

,


б) интерполяционные или неявные — метод Адамса-Мультона

,

где  — некоторые вычисляемые постоянные.

При одном и том же формула б) точнее[2], но требует решения нелинейной системы уравнений для нахождения значения . На практике находят приближение из а), а затем приводят одно или несколько уточнений по формуле

.

Свойства

Методы Адамса -го порядка требуют предварительного вычисления решения в начальных точках. Для вычисления начальных значений обычно используют одношаговые методы, например, 4-стадийный метод Рунге — Кутты 4-го порядка точности.

Локальная погрешность методов Адамса -го порядка — . Структура погрешности метода Адамса такова, что погрешность остаётся ограниченной или растёт очень медленно в случае асимптотически устойчивых решений уравнения. Это позволяет использовать этот метод для отыскания устойчивых периодических решений, в частности, для расчёта движения небесных тел.

Методы Адамса — Башфорта

Явные методы Адамса — Башфорта[3]

, (метод Эйлера)

Методы Адамса — Мультона

Неявные методы Адамса — Мультона[3]

, (неявный метод Эйлера)

Примечания

  1. Математический энциклопедический словарь. М.: «Сов. энциклопедия », 1988. — С. 43.
  2. Интерполяция точнее экстраполяции.
  3. Hairer, Ernst; Nørsett, Syvert Paul & Wanner, Gerhard (1993), Solving ordinary differential equations I: Nonstiff problems (2nd ed.), Berlin: Springer Verlag, ISBN 978-3-540-56670-0.

Библиография

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.