Лёд III

Лёд III — тетрагональная кристаллическая разновидность водного льда. Можно получить при охлаждении воды до −23 °C (250 K) и давлении 300 МПа. Его плотность больше, чем у воды, но он наименее плотный из всех разновидностей льда в зоне высоких давлений (1,16 г/см³ при давлении 350 МПа). Плотность жидкой фазы при том же давлении около 1,12 г/см³.

Фазовая диаграмма воды

При 350 MPa давлении плотность льда III составляет 1,16 г/см³. Статическая диэлектрическая проницаемость равна 117.

Обычный водный лёд относится по номенклатуре Бриджмена ко льду Ih. В лабораторных условиях (при разных температурах и давлениях) были созданы разные модификации льда: от льда II до льда XIX.

История открытия

Впервые модификации льда высокого давления были обнаружены Бриджменом, который в 1912 году построил фазовую диаграмму воды. Исследуя воду при различных температурах и давлениях, он кроме обычного льда выявил ещё 6 его структурных модификаций, которые обозначил как лёд II — лёд VII[1] .

Вплоть до 1960-х годов кристаллическая структура модификаций льда не была ясна. В 1960 году Б. Кэмб (Barclay Camb) и Датта (Datta) при помощи рентгеноструктурного анализа выявили у льда III тетрагональную симметрию, схожую с окисью кремния SiO2.

Получение

Фрагмент фазовой диаграммы воды

Лёд III — наиболее просто получаемый и доступный для исследований лёд высокого давления. Впервые он был получен из обыкновенного льда при температуре −22 °C (температура тройной точки лёд Ih — лёд III — вода) путём повышения давления до 210 МПа[1].

Возможно получение льда III из воды при давлении 210—350 МПа при медленном (около 0,5 °C/мин) охлаждении её до температуры ниже тройной точки (−22 °C).

Для проведения исследований лёд III после выдержки в течение получаса при −40 °C быстро охлаждают жидким азотом до температуры ниже −175 °C. При этой температуре лёд III метастабилен, он сохраняет свою структуру при снижении давления до атмосферного, хотя на фазовой диаграмме эти давления и температуры соответствуют льду II (выше 200 МПа) и обычному льду (ниже 200 МПа).

Лёд III неустойчив к воздействию рентгеновских лучей и быстро разрушается при высокой интенсивности облучения, что создаёт трудности для рентгенострукутрного анализа.

Физические свойства

Кристаллическая структура

Лёд III имеет тетрагональную кристаллическую решётку (P41212). При атмосферном давлении и температуре −175 °C параметры решётки составляют a = 6,73 ± 0,01 Å и c = 6,83 ± 0,01 Å, средняя длина водородных связей 2,775 Å[1].

В отличие от правильной тетрагональной решётки, лёд III имеет нарушенную кристаллическую структуру. В среднем каждая молекула имеет 3,2 связанных водородными связями соседей вместо 4, однако имеются ещё 2—3 не связанных водородными связями соседних молекул на расстоянии около 3,6 Å.

Тройные точки фазовой диаграммы

В таблице приведены значения давления и температуры в тройных точках для обычной и тяжёлой воды[2].

Фазы H2O D2O
P, МПа T, °C P, МПа T, °C
IIIIhЖ209,9−21,985202−18,8
IIIIhII212,9−34,7225−31,0
IIIIIV344,3−24,3347−21,5
IIIVЖ350,1−16,986348−14,5

Температура плавления

В работе[3] приводятся математические модели зависимости температуры плавления различных модификаций льда от давления. Плавление льда III происходит в диапазоне температур 251,165 К (−21,985 °C) — 256,164 K (−16,986 °C) при этом измеренные значения давления с ошибкой ±3 % меняется от 209,9 до 350,1 МПа. С целью согласования между собой моделей плавления льда Ih и льда III, для тройной точки III—Ih—Жидкость принято давление 258,566 Мпа (отклонение от экспериментального значения 0,64 %). При этом допущении зависимость давления от температуры на линии плавления выражается следующей формулой:

Для экспериментального значения в тройной точке (P = 209,9 МПа), формула принимает вид

Из последней формулы получаем следующую зависимость температуры плавления от давления:

где 209,9 < P < 350,1 МПа.

Во всех формулах температура измеряется в К, давление — в МПа.

Примечания

  1. Kamb, B. and Prakash, A. Structure of ice III // Acta Crystallographica Section B. — 1968. — Vol. 24, № 10. — P. 1317—1327.
  2. Chaplin, Martin. Water Phase Diagram. Water Structure and Science (11 августа 2009). Дата обращения: 27 января 2010. Архивировано 27 марта 2012 года.
  3. IAPWS, Release on the pressure along the melting and the sublimation curves of ordinary water substance Архивная копия от 6 октября 2008 на Wayback Machine, (1993); P. W. Bridgman, Water, in the liquid and five solid forms, under pressure, Proc. Am. Acad. Arts Sci. 47 (1912) 439—558.

Ссылки

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.