Круг Мора

Круг Мора — это круговая диаграмма, дающая наглядное представление о напряжениях в различных сечениях, проходящих через данную точку. Названа в честь Отто Кристиана Мора. Является двумерной графической интерпретацией тензора напряжений.

Круг Мора для объёмного напряженного состояния

Первым человеком, создавшим графическое представление напряжений для продольных и поперечных напряжений изгибаемой горизонтальной балки был Карл Кульман. Вклад Мора заключается в использовании этого подхода для плоского и объёмного напряжённых состояний и определение критерия прочности, основанного на круговой диаграмме напряжений[1].

Физический смысл

Внутренние усилия возникают между частицами сплошного деформируемого тела в качестве реакции на прикладываемые внешние силы: поверхностные и объёмные. Эта реакция согласуется со вторым законом Ньютона, приложенным к частицам материальных объектов. Величина интенсивности этих внутренних сил называется механическим напряжением. Т.к. тело считается сплошным, эти внутренние силы распределяются непрерывно по всему объёму рассматриваемого объекта.

В инженерном деле распределение напряжений в объекте определяется через анализ его напряжённо-деформируемого состояния для получения значений напряжений в каждой материальной точке объекта. Согласно Коши напряжение в любой точке сплошного материального тела полностью определяется девятью компонентами напряжений тензора напряжений, :

После того как распределение напряжений было определено относительно координатной системы , может быть необходимо определить компоненты тензора напряжений в частной материальной точке относительно повернутой координатной системы , т.е. напряжения, действующие на площадке с различной ориентацией, проходящей через интересующую нас точку. Например, может быть необходимо найти максимальное нормальное напряжение или максимальное касательное напряжение и направление, в котором они действуют. Для решения этой задачи необходимо совершить преобразование тензора напряжений. Графическим представлением этого преобразования тензора напряжений является круг Мора.

Уравнения круга Мора

Компоненты напряжений, действующих на плоскости (площадке), проходящей через материальную точку бесконечно малого материального тела, находящегося в состоянии равновесия

Для получения уравнения круга Мора для плоского напряжённого состояния рассматривается двумерное бесконечно малое материальное тело, находящееся вокруг материальной точки с единичной площадкой в направлении, параллельном плоскости -, т.е. перпендикулярно к зрителю.

Исходя из условий равновесия бесконечно малого материального тела величины нормального напряжения и касательного напряжения равны:

Эти два уравнения являются параметрическим представлением круга Мора.

Вывод параметрических уравнений круга Мора

Рассмотрим условия равновесия треугольной призмы, образованной путём сечения элементарного параллелепипеда наклонной площадкой. Нормальное напряжение действует на площадке площадью . Из равенства проекций сил на ось (ось ) получаем:

Известно, что

Тогда можно получить

Касательное напряжение также действует на площадке площадью . Из равенства проекций сил на ось (ось ) получаем:

Известно, что

Тогда можно получить

Примечания

  1. Parry, Richard Hawley Grey. Mohr circles, stress paths and geotechnics (англ.). — 2. Taylor & Francis, 2004. — P. 1—30. — ISBN 0-415-27297-1.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.