Интегральная фотография

Интегральная фотографияавтостереоскопическая и многоракурсная технология записи объёмного изображения, позволяющая фиксировать световое поле с помощью двумерного массива микролинз, расположенного перед фотопластинкой или другим светочувствительным датчиком[1]. Каждая из микролинз регистрирует объект съёмки со своего ракурса, соответствующего конкретной точке сенсора, а её действие аналогично работе элементарного фотоаппарата. В результате съёмки на проявленной с обращением фотопластинке образуется массив миниатюрных изображений снятой сцены, каждое из которых неразличимо глазом, но при рассматривании через микролинзовый растр все они складываются в общую картину.

Принцип интегральной фотографии Липпмана. Вверху — техника съёмки негатива, внизу — оптическая печать ортоскопического позитива

Полученное в результате мнимое изображение снятых объектов является их оптической копией[2]. Оно обладает стереоскопичностью и многоракурсностью, создавая иллюзию существования снятых предметов, «висящих» на том же расстоянии от светочувствительной поверхности, на котором они находились в момент съёмки. Объём воспроизводится за счёт того, что каждый глаз видит снятый объект со своего ракурса, который зависит от конкретной группы микролинз, участвующих в наблюдении. Точность воспроизведения хода лучей такова, что приводит к такой же аккомодации хрусталиков, как при наблюдении реальных объектов. Технология изобретена в 1908 году Габриэлем Липпманом, и предвосхитила аналогичную по свойствам и возможностям голографию[3].

Изображение, полученное по технологии интегральной фотографии, называется аспектограмма[1]. Технология получила название «интегральная фотография» потому, что конечное изображение воссоздаётся благодаря суммированию (интегрированию) элементарных микроскопических изображений, записанных всеми микролинзами. Вместо микролинзового растра может быть использован непрозрачный растр с микроскопическими отверстиями[4]. В этом случае каждое отверстие выполняет роль камеры-обскуры. Однако светосила такого растра многократно ниже, чем линзового, и практического применения он не получил[2].

Из-за того, что изображение на светочувствительном слое рассматривается с оборотной стороны, оно зеркально и обладает псевдоскопичностью, давая «обратный» стереоэффект. Получить прямое ортоскопическое изображение можно в результате оптической печати негатива интегрального снимка на позитивный фотоматериал через такой же микролинзовый растр. Эта технология, предложенная Липпманом, предусматривает, что оптические оси растров негатива и позитива в момент печати должны быть точно совмещены. Однако трудности точного совмещения делают получение полноценных ортоскопичных аспектограмм практически невозможным, ограничивая применение всей технологии сферой лабораторных экспериментов[5].

Самой большой проблемой остаётся технологическая сложность изготовления микролинзового растра. Необходимость светоизоляции соседних ячеек исключает возможность прессования массива из цельного листа пластмассы, как это реализовано в лентикулярной фотографии. Кроме того, требуется очень высокая разрешающая способность фотоэмульсии из-за сильного увеличения элементарных изображений при обратном синтезе цельной картины[6]. Полноценная реализация интегральной фотографии оказалась возможна методами мультиплексной голографии, изобретённой в 1977 году[7]. С появлением цифровой фотографии в конце XX века принципы Липпмана получили развитие при создании пленоптических камер[8]. В 2010 году японская вещательная корпорация NHK и компания Toshiba продемонстрировали прототипы видеосистем, работающих по интегральному принципу. Изображение в представленной технологии строит растр, состоящий из 250 рядов по 400 микролинз в каждом[9].

См. также

Примечания

  1. Стереоскопия в кино-, фото-, видеотехнике, 2003, с. 45.
  2. Техника объёмной фотографии, 1978, с. 41.
  3. Техника объёмной фотографии, 1978, с. 36.
  4. Олег Нечай. Что будет после 3D: пленоптическое видео. журнал «Компьютерра» (11 апреля 2013). Дата обращения: 12 июля 2019.
  5. Техника объёмной фотографии, 1978, с. 43.
  6. Техника объёмной фотографии, 1978, с. 48.
  7. Оптическая голография, 1982, с. 230.
  8. Александр Сергеев. От мегапикселей к мегалучам. журнал «Наука в фокусе» (2012). Дата обращения: 17 июля 2019.
  9. Lisa Zyga. Integral 3D TV system projects a promising future (англ.). Phys.org (27 августа 2010). Дата обращения: 12 июля 2019.

Литература

  • В. И. Власенко. Глава III. Интегральная фотография // Техника объёмной фотографии / А. Б. Долецкая. М.: «Искусство», 1978. — С. 36—66. — 102 с. 50 000 экз.
  • Г. Колфилд. 5. 5. 4. Многократные фотографии // Оптическая голография = Handbook of Optical Holography (англ.) / С. Б. Гуревич. М.: «Мир», 1982. — Vol. 1. — 376 p.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.