Длина модуля

Длина модуля — способ измерения «размера» модуля, обобщающий понятие размерности векторного пространства. Длина определяется как максимальная длина цепочки вложенных подмодулей.

Определение

Пусть M — (левый или правый) модуль над кольцом R. Мы говорим что длина цепочки его подмодулей вида

равна n, то есть считаем число строгих включений, а не число подмодулей. Длина модуля M — это наибольшая длина цепочки среди всех цепочек его подмодулей. Если наибольшей длины цепочки не существует, длина M равна бесконечности.

Примеры

  • Единственный модуль длины 0 — нулевой модуль. Модули длины 1 называются простыми.
  • Для конечномерного векторного пространства длина совпадает с размерностью.
  • Длина циклической группы равна числу множителей в разложении n на простые.

Свойства

Модуль имеет конечную длину тогда и только тогда, когда он является артиновым и нётеровым.

Пусть

является короткой точной последовательностью модулей. В этом случае M имеет конечную длину тогда и только тогда, когда L и N имеют конечную длину, причём длина M равна сумме их длин. В частности, длина прямой суммы модулей равна сумме длин компонент.

Литература

  • Steven H. Weintraub, Representation Theory of Finite Groups AMS (2003) — ISBN 0-8218-3222-0, ISBN 978-0-8218-3222-6
  • Barile, Margherita. Module Length на сайте Wolfram MathWorld.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.