Гиперболическое множество

В теории динамических систем, говорят, что диффеоморфизм многообразия гиперболичен на инвариантном множестве , если касательное расслоение над допускает непрерывное разложение в прямую сумму,

причём подрасслоения и инвариантны относительно динамики, и вектора растягиваются, а вектора сжимаются под действием динамики:

где и — константы.

Также в этом случае говорят, что  — гиперболическое инвариантное множество отображения .

Линейные системы

Линейная система ОДУ называется гиперболической, если все её собственные значения (вообще говоря, комплексные) имеют отличные от нуля вещественные части.[1]

См. также

Примечания

Литература

  • Каток А. Б., Хассельблат Б. Введение в современную теорию динамических систем с обзором последних достижений / Пер. с англ. под ред. А. С. Городецкого. М.: МЦНМО, 2005. — 464 с. — ISBN 5-94057-063-1.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.