Helicos Biosciences
Helicos Biosciences — это компания, которая предоставила революционно новую технологию секвенирования единичных молекул, названную true Single Molecule Sequencing (tSMS)[1].
Helicos Biosciences | |
---|---|
Листинг на бирже | NASDAQ: HLCS |
Основание | 2003 |
Расположение | |
Отрасль | биотехнологии |
Сайт | helicosbio.com (англ.) |
tSMS позволяет проводить одновременное прямое секвенирование миллиарда цепей ДНК[1]. Процесс секвенирования включает в себя несколько этапов[2]. На первом шаге подготавливаются образцы за счет разрезания ДНК на фрагменты[2]. Далее к каждому фрагменту присоединяется полиадениновый хвост с помощью аденозин-концевой трансферазы[3]. На следующем этапе денатурированная ДНК с полиаденозиновым хвостом гибридизуется на политиминовых олигонуклеотидах, которые соединены с проточной кюветой[2]. Цикл секвенирования состоит из удлинения за счет одного из четырёх флуоресцентно-меченых нуклеотидов, присоединение которого детектируется на секвенаторе компании Heliscope[2]. Последующее отщепление флуорофора позволяет запустить следующий цикл присоединения флуоресцентно-меченых нуклеотидов, которые позволяют определить последовательность ДНК[2][4].
История
Компания Helicos Biosience была основана в 2003 году[1]. За основу tSMS™ технологии была взята работа Браславского (Braslavsky) и его коллег, посвященная секвенированию единичных молекул ДНК у человека и дрожжей[2][5]. Позже технология была усовершенствована на основе работ Озолака (Ozsolak) и Милоса (Milos), что позволило осуществлять более точный синтез гомополимеров и прямое РНК-секвенирование[2][6][7][8].
Компания создала Genetic Analysis Platform первый в мире ДНК-микроскоп. Платформа была разработана Браславским (Braslavsky) и его коллегами в 2003 году[1][3]. Преимущество этой технологии в том, что нет необходимости производить амплификацию образцов ДНК, а также в более высокой скорости секвенирования по сравнению с секвенаторами второго поколения[1][3]. Heliscope секвенатор способен секвенировать до 28 Гб одновременно и это займет около 8 дней[2]. Он генерирует короткие риды (reads) с максимальной длиной в 55 нуклеотидных оснований[2].
В ноябре 2012 года компания Helicos Biosience была признана банкротом и прекратила существование[9].
Этапы секвенирования
Процесс секвенирования включает следующие этапы:
- подготовка образцов;
- секвенирование и визуализация[10].
Подготовка образцов
Компания Helicos Biosience предоставляла две технологии подготовки образцов: one-pass sequencing и two-pass sequencing[10]. Отличительной особенностью этих методов является отсутствие стадии амплификации образцов с помощью ПЦР (Полимеразмой Цепной Реакции), при которой есть вероятность ошибки при репликации[10].
One-pass sequencing
На первом этапе праймеры, распределённые на твёрдой основе, ковалентно с ней связаны[10]. На следующем этапе образцы одноцепочечной ДНК, расщеплённые на фрагменты и к которым уже присоединены адаптеры к праймерам, гибридизуются на иммобилизованных праймерах, после чего с ними связывается ДНК-полимераза и происходит синтез[10].
Two-pass sequencing
В этом случае, сами одноцепочечные фрагменты ДНК ковалентно сшиваются с твёрдой основой с помощью комплекса стрептовидин-биотин[6] и после этого к одноцепочечным фрагментам ДНК присоединяются праймеры, с которыми может связаться ДНК-полимераза[10].
Секвенирование и визуализация
Процесс секвенирования включает следующие стадии:
- Посадка ДНК-полимеразы на праймеры;
- Присоединение только одного флуоресцентно-меченого нуклеотида, который комплементарен иммобилизованному ДНК фрагменту;
- Терминация синтеза, после присоединения одного нуклеотида;
- Смываются оставшиеся не присоединенные нуклеотиды;
- Визуализация присоединенного нуклеотида;
- Стадия расщепления, в которой удаляется ингибирующая группа и флуоресцентный краситель с помощью трис (2-карбоксиэтил)фосфина (TCEP);
- Свободная сульфогидридная группа кэпируется йодоацетамидом;
- Перед началом следующего цикла снова омывают твёрдую основу с образцами[10].
Компания использует одноцветный краситель для проведения циклов[10]. Для визуализации флуоресцентного красителя используется технология TIRT (total internal reflection fluorescence), в которой присутствуют два лазера с длинами волн 635 нм и 532 нм[7][10]. Аналогичная технология используется и Illumina/Solexa геномным анализатором[10]. В качестве флуоресцентного красителя используется Cy5 краситель[10].
Применение
Продукция большого количества ридов с низкой стоимостью позволило использовать технологии секвенирования нового поколения (Next-generation sequencing) в широком круге исследований[10]. В частности технологии компании Helicos Biosience позволяют проводить следующие исследования:
- секвенирование фрагментов генома, а также всего генома различных организмов[10];
- секвенирование ДНК из костей древних животных[11][12];
- прямое РНК-секвенирование[10];
- секвенирование индивидуальных геномов, что вероятно может быть использовано при исследовании различных генетических заболеваний[10].
Преимущества и недостатки
Главными преимуществами данного метода являются отсутствие стадии амплификации образцов, а также достаточно высокая скорость секвенирования и более низкая стоимость по сравнению с секвенаторами второго поколения[1][3][10]. К примеру, секвенирование генома человека обходится в 48000$US[10]. Однако, у этого метода есть ряд недостатков. Например, все же остается достаточно высоким уровень ошибок по сравнению с другими секвенаторами нового поколения[10].
Примечания
- Partice Milos (2008) Helicos Biosience, Pharmacogenomics, 9(4), p. 477—480.
- Chandra Shekhar Pareek, Rafal Smoczynski, Andrzej Tretyn (2011) Sequencing technologies and genome sequencing, J Appl Genetics, 52, p. 413—435.
- Zhenqiang Su, Baitang Ning, Hong Fang, Huixiao Hong, Roger Perkins, Weida Tong, Leming Shi (2011) Next-generation sequencing and its applications in molecular diagnostics, Expert Rev. Mol. Diagn. 11(3), p. 333—343.
- Timothy D. Harris, Phillip R. Buzby, Hazen Babcock, Eric Beer, Jayson Bowers, Ido Braslavsky, Marie Causey, Jennifer Colonell, James DiMeo, J. William Efcavitch, Eldar Giladi, Jaime Gill, John Healy, Mirna Jarosz, Dan Lapen, Keith Moulton, Stephen R. Quake, Kathleen Steinmann, Edward Thayer, Anastasia Tyurina, Rebecca Ward, Howard Weiss, Zheng Xie (2008) Single-Molecule DNA Sequencing of a Viral Genome, Science, 320, p. 106—109.
- Ido Braslavsky, Benedict Hebert, Emil Kartalov, Stephen R. Quake (2003) Helicos Biosience, PNAS, 100(7), p. 3960-3964.
- Fatih Ozsolak, Philipp Kapranov, Sylvain Foissac, Sang Woo Kim, Elane Fishilevich, A. Paula Monaghan, Bino John, Patrice M. Milos (2010) Comprehensive Polyadenylation Site Maps in Yeast and Human Reveal Pervasive Alternative Polyadenylation, Cell., 143(6), p. 1018—1029.
- Fatih Ozsolak, Patrice M. Milos (2011) RNA sequencing: advances, challenges and opportunities, Nat Rev Genet., 12(2), p. 87-98.
- Fatih Ozsolak, Patrice M. Milos (2011) Transcriptome Profiling Using Single-Molecule Direct RNA Sequencing, Methods Mol Biol., 733, p. 51-61.
- Battered Helicos BioSciences Corporation Files for
- Michael L. Metzker (2010) Sequencing technologies — the next generation, NATuRe RevIewS | Genetics, 11, p. 31-46.
- Aurelien Ginolhac, Julia Vilstrup, Jesper Stenderup, Morten Rasmussen, Mathias Stiller, Beth Shapiro, Grant Zazula, Duane Froese, Kathleen E Steinmann, John F Thompson, Khaled AS AL-Rasheid, Thomas MP Gilbert, Eske Willerslev and Ludovic Orlando (2012) Improving the performance of true single molecule sequencing for ancient DNA, BMC Genomics, 13:177.
- Ludovic Orlando, Aurelien Ginolhac, Maanasa Raghavan, Julia Vilstrup, Morten Rasmussen, Kim Magnussen, Kathleen E. Steinmann, Philipp Kapranov, John F. Thompson, Grant Zazula, Duane Froese, Ida Moltke, Beth Shapiro, Michael Hofreiter, Khaled A.S. Al-Rasheid, M. Thomas P. Gilbert, Eske Willerslev (2011) True single-molecule DNA sequencing of a pleistocene horse bone, Genome Research, 21, p. 1705—1719.