Эффект Джоуля — Томсона

Эффе́ктом Джо́уля — То́мсона называют изменение температуры газа или жидкости при стационарном адиабатическом дросселировании[1] — медленном протекании газа под действием постоянного перепада давлений сквозь дроссель (пористую перегородку). Назван в честь открывших его Джеймса Джоуля и Уильяма Томсона[K 1]. Данный эффект является одним из методов получения низких температур.

С именами Джоуля и Гей-Люссака связан несколько отличающийся по постановке эксперимента эффект: расширение газа через открытый клапан из сосуда высокого давления в сосуд с низким давлением (адиабатическое расширение в вакуум). Теория этого процесса к тому же имеет много сходных черт с анализом собственно эффекта Джоуля — Томсона, поэтому часто (в том числе и в настоящей статье) оба явления обсуждаются одновременно.

Процессы адиабатического расширения

Адиабатическое (в отсутствие теплообмена) и при этом стационарное (когда кинетическая энергия движения пренебрежимо мала) расширение может быть осуществлено различными способами. Изменение температуры при расширении зависит не только от начального и конечного давления, но и способа, которым осуществляется расширение.

  1. Обратимое расширение имеет место, если теплоизолированная термодинамическая система находится в термодинамическом равновесии в ходе процесса. Такое расширение называется изоэнтропийным, поскольку энтропия системы остаётся неизменной: . Обычным примером такого расширения является медленное расширение газа при движении закрывающего сосуд поршня. В этом случае при расширении, то есть при положительном изменении объёма система совершает положительную работу , где — давление. Как результат, внутренняя энергия уменьшается: [2].
  2. В процессе свободного расширения газ не совершает работу и не поглощает тепло, поэтому его внутренняя энергия сохраняется. При таком расширении, температура идеального газа  оставалась бы постоянной, но температура реального газа может и уменьшаться[3].
  3. Метод расширения, описанный в настоящей статье как процесс Джоуля — Томсона, в которой газ или жидкость при давлении Р1 перетекает в область пониженного давления P2 без существенного изменения кинетической энергии, называется расширением Джоуля–Томсона. Расширение существенно необратимо. В ходе этого процесса энтальпия остается неизменной (см. доказательство ниже). В отличие от свободного расширения, совершается работа, вызывающая изменение внутренней энергии газа.

Термодинамика процесса Джоуля — Томсона

Рис. 1 — Сохранение энтальпии в эффекте Джоуля — Томсона. Изменение энергии газа в ходе этого процесса равно работе: . Из определения энтальпии () следует, что

Эффект Джоуля — Томсона — это изоэнтальпийный процесс, что позволяет описать его методами термодинамики. Схема процесса представлена на рисунке 1. Левый поршень, вытесняя газ под давлением из объёма , совершает над ним работу . Пройдя через дроссель и расширяясь в объём , газ совершает работу над правым поршнем. Суммарная работа , совершенная над газом, равна изменению его внутренней энергии , так что энтальпия сохраняется: [4][5]

Изменение температуры

Рис. 2 – Коэффициент Джоуля — Томсона в зависимости от температуры для различных газов при атмосферном давлении.
Рис. 3 — Знак коэффициента Джоуля — Томсона для азота N2. В области, ограниченной красной кривой, эффект Джоуля — Томсона приводит к охлаждению () вне этой области — к нагреву (). Голубая кривая, заканчивающаяся в критической точке, разделяет фазы жидкости и газа. Штриховые линии условно выделяют сверхкритическую жидкость, в которой температура и давление превышают таковые в критической точке.

Сохранение энтальпии позволяет найти связь между изменениями давления и температуры в процессе Джоуля — Томсона. Чтобы установить эту связь, энтальпия должна быть выражена в виде функции от давления и температуры .

Чтобы получить выражение для дифференциала энтальпии в переменных дифференциал энтропии выражается через :

Температурная производная энтропии выражается через (измеримую) теплоёмкость при постоянном давлении . Производная энтропии по давлению выражаются с помощью четвёртого соотношения Максвелла (G2) что даёт и:

Изменение температуры при малом изменении давления (дифференциальный эффект) в результате процесса Джоуля — Томсона определяется производной , называемой коэффициентом Джоуля — Томсона.

Из уравнения для дифференциала энтальпии в переменных температура — давления находится связь между дифференциалами температуры и давления в изоэнтальпийном процессе (при ). Равенство нулю дифференциала энтальпии даёт[6][7] и

Для идеального газа , а для реального газа он определяется уравнением состояния.

Если при протекании газа через пористую перегородку температура возрастает (), то эффект называют отрицательным, и наоборот, если температура убывает (), то процесс называют положительным. Температуру, при которой меняет знак, называют температурой инверсии.

Применение

  • Процесс Джоуля — Томсона используют для получения низких температур. Для этой цели обычно применяют интегральный процесс, при котором давление изменяется в широких пределах.
  • Измерение позволяет установить уравнение состояния газа.

См. также

Комментарии

  1. Поскольку Томсон также известен под именем лорда Кельвина, в англоязычной литературе в названии эффекта может присутствовать имя Кельвина вместо Томсона

Примечания

Литература

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.