Цитокинины

Цитокинины (греч. κύτταρο ячейки + греч. κίνηση движение) — класс гормонов растений 6-аминопуринового ряда, стимулирующих деление клеток (цитокинез). С этой способностью цитокининов связаны их основные функции в развитии растений — например, поддержание апикальной меристемы побега. Кроме того, к физиологическим функциям цитокининов относятся стимуляция транспорта питательных веществ в клетку, ингибирование роста боковых корней, замедление старения листьев[1]. Молекулярная масса (~ 5-20 кДа).

Цитокинины вовлечены в рост растительных клеток и другие физиологические процессы. Эффект цитокининов впервые был открыт на табаке в 1955 году Фольком Скугом.[2]

Кроме природных цитокининов — производных 6-аминопурина, представленных изопентинилом, зеатином и 6-бензиламинопурином, известны и синтетические приозводные фенилмочевины, стимулирующие цитокинез у растений — N,N'-дифенилмочевина и тидиазурон (N-фенил-N'-(1,2,3-тиадиазол-5-ил)мочевина). Цитокинины синтезируется в основном в корнях, а также в стеблях и листьях. Камбий и другие активно делящиеся ткани растений также являются местом синтеза цитокининов.[3] Не показано, что цитокинины типа фенилмочевины естественно встречаются в тканях растений.[4] Цитокинины участвуют в местной передаче сигнала, а также в передаче сигнала на расстоянии, причем последний механизм также используется для транспорта пуринов и нуклеозидов.[5]

История открытия

Открытие цитокининов связано с рядом экспериментов (Ф. Скуг), направленных на получение растительной культуры клеток. Сердцевинную паренхиму стеблей табака помещали на искусственные среды, содержащие минеральные вещества, сахар, витамины, аминокислоты, ИУК.
В среды начали добавлять ДНК из молок сельди. Сначала это не привело к успеху, но, благодаря ошибке при проведении автоклавирования (среда с ДНК перегрелась), паренхима начала активно делиться. Оказалось, что в перегретом препарате ДНК содержался фурфуриладенин (кинетин), который на фоне ауксина, вызывает деление клеток[6]. Первый натуральный цитокинин — зеатин — был выделен в 1974 году[1].

Механизм действия

Цитокинины участвуют во многих физиологических процессах растений, регулируют деления клеток, морфогенез побега и корня, созревание хлоропластов, линейный рост клетки, образование добавочных почек и старение.[7] Соотношение ауксинов к цитокининам является ключевым фактором деления клеток и дифференцировки тканей растения.

В то время, как эффект цитокининов на сосудистые растения является плейотропным, цитокинины вызывают изменения роста протонемы у мхов. Образование почек можно считать вариантом дифференцировки клеток и этот процесс является очень специфическим эффектом цитокининов.[8]

Биосинтез

Предшественниками биосинтеза цитокининов в растениях являются свободные АТФ и АДФ, а также тРНК. Первая стадия биосинтеза цитокининов — синтез изопентил-нуклеотидов из АТФ или АДФ и диметилаллилпирофосфата — катализируется ферментом изопентенилтрасферазой (IPT). Кроме IPT, у растений выявлены ферменты тРНК-IPT, использующие в качестве субстрата тРНК — они используются для синтеза цис-зеатина. В дальнейшем изопентенил-нуклеотиды могут превращаться в зеатин-нуклеотиды с помощью фитохром P450-монооксигеназ. Наконец, последней стадией является получение активных цитокининов из цитокининовых нуклеотидов путём дефосфорилирования и дерибозилирования — это реакция катализируется ферментом 5’монофосфат-фосфорибогидролазой, который кодируется геном LOG.[1]

Фермент аденозинфосфатизопентилтрансфераза катализирует первую реакцию в биосинтезе изопреновых цитокининов, фермент использует АТР, ADP или AMP как субстрат и диметилаллилдифосфат или гидроксиметилбутенилдифосфат как донор пренильной группы.[9] Данная реакция является лимитирующей в биосинтезе цитокининов, субстраты—доноры пренильных групп образуются в пентилэритрол-фосфатном биохимическом пути.[9]

У растений и бактерий цитокинины также могут образовываться из продуктов распада тРНК.[9][10] Транспортные РНК, с антикодоном, начинающимся с уридина и имеющие пренилированные аденозины рядом с антикодоном, освобождают при деградации аденозины как цитокинины.[9] Пренилирование таких аденинов осуществляется тРНК-изопентилтрансферазой[10]

Показано также, что ауксины регулируют биосинтез цитокининов.[11]

По последним данным, разные этапы биосинтеза цитокининов осуществляются в разных тканях растения. Основным местом синтеза цитокининовых нуклеотидов является кончик корня, небольшое их количество синтезируется также в апексе побега, цветках и плодах. По ксилеме цитокининовые нуклеотиды доставляются в апекс побега, который является основным местом синтеза активных свободных цитокининов[1].

Катаболизм и инактивация цитокининов

Основные ферменты катаболизма цитокининов — цитокинин-оксидазы, которые локализованы в вакуолях и эндоплазматическом ретикуллуме (ЭР) и осуществляет расщепление цитокининов с образованием аденина. Субстратами цитокинин-оксидаз являются свободные цитокинины и их рибозиды. Помимо расщепления цитокинин-оксидазами возможна обратимая или необратимая инактивация цитокининов путём образования конъюгатов[1].

Транспорт цитокининов

Основной транспортной формой цитокининов является зеатин-рибозид (ксилемный транспорт). Кроме того, существует транспорт цитокининов по флоэме, благодаря которому свободные цитокинины и их конъюгаты могут перемещаться по растению в обоих направлениях.

Транспорт цитокининов между клетками растения осуществляют две группы белков:

  • пуринпермеазы (PUP), которые транспортируют в клетку свободные цитокинины, а также аденин.
  • равновесные транспортеры нуклеозидов (ENT), которые осуществляют транспорт в клетку цитокинин-рибозидов[1].

Функции цитокининов в развитии растений

Функции цитокининов в развитии растений очень многообразны:

  • контроль пролиферации клеток;
  • координация роста и развития растений в зависимости от доступности минерального и органического питания;
  • поддержание апикальной меристемы побега и ингибирование развития корневой системы;
  • предотвращение старения листьев.

В контроле большинства онтогенетических процессов цитокинины являются антагонистами ауксинов и гиббереллинов[1].

Примечания

  1. Лутова Л.А., Ежова Т.А., Додуева И.Е., Осипова М.А. Генетика развития растений. / С.Г. Инге-Вечтомов. — Санкт-Петербург, 2011. — С. 432. — ISBN 978-5-94869-104-6.
  2. J.J. Kieber (2002): Tribute to Folke Skoog: Recent advances in our understanding of cytokinin biology. Journal of Plant Growth Regulation 21, 1-2.  (недоступная ссылка)
  3. Chen, C. et al. 1985. Localization of Cytokinin Biosynthetic Sites in Pea Plants and Carrot Roots. Plant Physiology 78:510-513.
  4. Mok, DWS and Mok, MC. 2001. Cytokinin metabolism and action. Annual Review of Plant Physiology and Plant Molecular Biology 52: 89-118
  5. Sakakibara, H. 2006. Cytokinins: Activity, Biosynthesis, and Translocation. Annual Review of Plant Biology 57: 431—449
  6. Физиология растений: учебник для студентов ВУЗов / под ред. И. П. Ермакова.
  7. Kieber JJ (2002 Cytokinins. In CR Somerville, EM Meyerowitz, eds, [www.aspb.org/publications/arabidopsis/ The Arabidopsis Book]. American Society of Plant Biologists, Rockville, MD, doi: 10.1199/tab.0009
  8. Eva L. Decker, Wolfgang Frank, Eric Sarnighausen, Ralf Reski (2006): Moss systems biology en route: Phytohormones in Physcomitrella development. Plant Biology 8, 397—406 Архивная копия от 24 января 2008 на Wayback Machine
  9. Ildoo Hwang, Hitoshi Sakakibara (2006) Cytokinin biosynthesis and perception Physiologia Plantarum 126 (4), 528—538
  10. Kaori Miyawaki, Miho Matsumoto-Kitano, Tatsuo Kakimoto (2004) Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate The Plant Journal 37 (1), 128—138
  11. Nordström, A. 2004. Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: A factor of potential importance for auxin-cytokinin-regulated development. PNAS 101:8039-8044

Ссылки

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.