Функция Дирихле

Функция Дирихле́ — функция, принимающая единицу на рациональных значениях, и ноль — на иррациональных, стандартный пример всюду разрывной функции. Введена в 1829 году немецким математиком Дирихле.[1]

Определение

Символически, функция Дирихле определяется следующим образом:[2]

Свойства

Принадлежит второму классу Бэра, то есть её нельзя представить как (поточечный) предел последовательности непрерывных функций, но можно представить как повторный предел последовательности непрерывных функций[3][4]:

.

Каждая точка в области определения является точкой разрыва второго рода (причём существенного).[5]

Является периодической функцией, её периодом является любое рациональное число, не равное нулю; основного периода функция не имеет.[6]

Не является интегрируемой в смысле Римана.[7] Простая функция; измерима по отношению к мере Лебега; интеграл Лебега от функции Дирихле на любом числовом промежутке равен нулю, это следует из того, что мера Лебега множества рациональных чисел равна нулю.

Вариации и обобщения

Вариацией функции Дирихле является функция Римана, называемая также «функцией Тома» (Thomae).

Примечания

  1. Ferreiros, 2013, с. 150.
  2. Фихтенгольц, 2003, с. 115.
  3. Dunham, 2005, с. 197.
  4. Рудин, 1976, с. 162 Пример 7.5.
  5. Зорич, 2019, с. 145.
  6. encyclopediamath, comment.
  7. Никольский, 1983, с. 357.

Литература

  • Jose Ferreiros. Labyrinth of Thought: A History of Set Theory and Its Role in Modern Mathematics. — 2013. — 440 с.
  • Г.М. Фихтенгольц. Курс дифференциального и интегрального исчисления. — 8-е изд.. — Физматлит, 2003. — Т. 1.
  • С.М. Никольский. Курс математического анализа. — Москва: «Наука», Главная редакция физико-математической литературы, 1983. — Т. 1.
  • Dirichlet-function. Encyclopedia of Mathematics.
  • В. Немыцкий, М. Слудская, А. Черкасов. Курс математического анализа. — Москва, Ленинград: Государственное издательство технико-теоретической литературы, 1940. — Т. 1.
  • William Dunham. The Calculus Gallery. — Princeton University Press, 2005. — ISBN 0-691-09565-5.
  • У. Рудин. Основы математического анализа. — Москва: «Мир», 1976.
  • В. А. Зорич. Математический анализ. Часть 1. — 10-е изд., исправленное. — Москва: МЦНМО, 2019.

Ссылки

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.