Формула Крофтона

Формула Крофтона — классический результат интегральной геометрии. Связывает длину кривой со средним числом пересечений с прямыми.

Названа в честь Моргана Крофтона.

Формулировка

Пусть  — спрямляемая плоская кривая. Для прямой , обозначим через число точек, в которых и пересекаются. Мы можем параметризовать ориентированные прямые углом к выбранному направлению и расстоянием от начала координат взятым со знаком. Тогда длина кривой равна

Замечания

инвариантна относительно движений плоскости. Таким образом, она даёт естественную меру для интегрирования.
  • Формула Крофтона эквивалентна следующему утверждению: Длина кривой прямо пропорциональна средней длине её ортогональных проекций. При этом длина проекции считается с учётом кратности.

Приложения

Формула Крофтона даёт доказательства следующих результатов:

Вариации и обобщения

  • Формула Крофтона обобщается для любой римановой поверхности; при этом для интегрирования используется естественная мера на пространстве геодезических фиксированной длины.
    • Например, длина кривой на единичной сфере равна , где обозначает среднее число пересечений кривой с окружностями большого круга.

Литература

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.