Задача Бюффона о бросании иглы

Задача Бюффона о бросании иглы — один из первых примеров применения метода Монте-Карло и рассмотрения понятия геометрической вероятности. Задача была сформулирована Бюффоном в 1777 году. Оказалось, что эта задача сделала возможным определение числа π вероятностными методами.

Суть задачи

Суть метода была в бросании иглы длиной на плоскость, расчерченную параллельными прямыми, расположенными на расстоянии друг от друга (см. Рис. 1).

Рисунок 1. Метод Бюффона

Вероятность (как видно из дальнейшего контекста, речь идёт не о вероятности, а о математическом ожидании количества пересечений за один опыт; вероятностью это становится лишь при условии, что ) того, что отрезок пересечет прямую, связана с числом Пи:

, где

  •  — расстояние от начала иглы до ближайшей к ней прямой;
  •  — угол иглы относительно прямых.

При условии, что получается решение: . Таким образом, подсчитав долю отрезков, пересекающих прямые, можно приближенно определить число Пи. При увеличении количества попыток точность получаемого результата будет увеличиваться.

В 1864 году капитан Фокс, выздоравливая после ранения, чтобы как-то занять себя, реализовал эксперимент по бросанию иглы[1]. Результаты представлены в следующей таблице:[2]

Число бросаний Число пересечений Длина иглы Расстояние между прямыми Вращение Значение Пи Ошибка
Первая попытка 500 236 3 4 отсутствует 3.1780 −0.03640734
Вторая попытка 530 253 3 4 присутствует 3.1423 −0.00070734
Третья попытка 590 939 5 2 присутствует 3.1416 +0.00000734

Комментарии:

  • Вращение плоскости применялось[2] (и как показывают результаты — успешно) для того, чтобы уменьшить систематическую ошибку.
  • В третьей попытке длина иглы была больше расстояния между линиями, что позволило не увеличивая числа бросаний эффективно увеличить число событий и повысить точность.

Вариации и обобщения

  • Задача о макаронине Бюффона — вариант задачи для кривых.[3]

Примечания

  1. Math Surprises: An Example (англ.)
  2. A.Hall. On an experimental determination of Pi // The Messenger of Mathematics. — 1872. — Vol. 2. — P. 113-114.
  3. Ramaley, J. F. (1969). “Buffon's Noodle Problem” (PDF). The American Mathematical Monthly. Mathematical Association of America. 76 (8, October 1969): 916—918. DOI:10.2307/2317945. ISSN 0002-9890. JSTOR 2317945. Архивировано из оригинала (PDF) 2020-01-14. Дата обращения 2020-11-23. Используется устаревший параметр |deadlink= (справка)

Литература

  • Федотов Н. Г. Методы стохастической геометрии в распознавании образов. М.: Радио и связь, 1990. — 142 с.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.