Универсальная арифметика

«Универсальная арифметика» (или «Всеобщая арифметика», лат. Arithmetica Universalis) — монография Исаака Ньютона, впервые опубликованная в 1707 году на латинском языке. Универсальной арифметикой Ньютон называл алгебру, и данный труд внёс существенный вклад в развитие этого раздела математики. Позднее книгу под таким же названием опубликовал Эйлер в 1768—1769 годах.

Универсальная арифметика
Arithmetica Universalis

Латинское издание (1707)
Автор Исаак Ньютон
Язык оригинала латинский
Дата первой публикации 1707

История создания

Английское издание (1720)

Среди курсов, которые вёл в Тринити-колледже Исаак Ньютон, был курс алгебры, и согласно правилам Ньютон сдал в университетскую библиотеку аккуратно оформленный латинский конспект этих лекций[1]. После ухода Ньютона от преподавательской деятельности его преемник на кафедре, Уильям Уистон опубликовал эту рукопись под названием «Универсальная арифметика». В 1720 году Джозеф Рафсон издал английский перевод книги. К первому изданию был приложен мемуар Галлея о численном методе нахождения корней уравнений.

Книга вызвала большой интерес и неоднократно переиздавалась на разных языках; в XVIII веке вышли 5 только латинских её переизданий. Каждое новое издание сопровождалось растущим числом комментариев и дополнений.

Краткое содержание

В начале книги Ньютон поясняет отношение арифметики и алгебры: цель алгебры — открыть и исследовать общие законы арифметики, а также предложить практические методы решения уравнений. Далее Ньютон даёт классическое определение вещественного числа как отношения результата измерения к единичному эталону[2]:

Под числом мы понимаем не столько множество единиц, сколько отвлечённое отношение какой-нибудь величины к другой величине того же рода, принятой за единицу.

Это определение фактически завершает многолетний процесс «уравнения в правах» целых, дробных и иррациональных чисел. В отличие от многих математиков того времени, Ньютон не рассматривал отдельно отрицательные числа и на примерах показал их полезность.

Затем излагается теория десятичных дробей, действий с ними и используемых обозначений. Ньютон в своих выкладках использовал обозначения Декарта, мало чем отличающиеся от современных. Однако, в отличие от Декарта, он полностью отделил алгебру от геометрии, подчеркнув, что при всей взаимной пользе у этих наук разные предметы.

В отдельных разделах, с многочисленными примерами и геометрическими иллюстрациями, излагаются действия с дробями, извлечение корней, типы уравнений, методы их упрощения и решения. Ньютон почти не приводит доказательств своих утверждений и основное внимание уделяет прикладным аспектам материала. Некоторые высказанные в книге глубокие теоремы удалось строго доказать только в XIX веке[1].

Особое внимание Ньютон уделил решению алгебраических уравнений, эта тема занимает почти половину книги. В ходе изложения приводятся решения 77 типовых задач (в основном геометрического характера), снабжённые подробными разъяснениями и методическими рекомендациями.

Среди других открытий Ньютона, изложенных в книге, можно упомянуть:

Перевод на русский язык

  • Ньютон И. Всеобщая арифметика или Книга об арифметических синтезе и анализе. М.: Изд. АН СССР, 1948. — 442 с. — (Классики науки).

Литература

  • История математики / Под редакцией А. П. Юшкевича, в трёх томах. М.: Наука, 1970. — Т. II.
  • Никифоровский В. А. Из истории алгебры XVI-XVII вв. М.: Наука, 1979. — С. 174-204. — 208 с. — (История науки и техники).
  • Юшкевич А. П. О «Всеобщей арифметике» И. Ньютона. // В книге: Ньютон И. Всеобщая арифметика. М.: Изд. АН СССР, 1948, стр. 347-391.

Ссылки

Примечания

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.