Тепловая электростанция
Теплова́я электроста́нция (или теплова́я электри́ческая ста́нция) — электростанция, вырабатывающая электрическую энергию за счёт преобразования химической энергии топлива в процессе сжигания в тепловую, а затем в механическую энергию вращения вала электрогенератора. В качестве топлива широко используются различные горючие ископаемые: уголь, природный газ (пропан, метан), реже — мазут, водород, биогаз, сланцевый газ, нефть, бензин, дизельное топливо, спирт отходы, ранее — торф, горючие сланцы, дрова.
Многие крупные тепловые станции вырабатывают лишь электричество — традиционно ГРЭС (в настоящее время — КЭС); средние станции могут также использоваться для выработки тепла в схемах теплоснабжения (ТЭЦ).
В традиционных теплоэлектростанциях топливо сжигается в топке парового котла, нагревая и превращая в пар питательную воду, прокачиваемую внутри котла в специальных трубках (водотрубный котёл). Полученный перегретый пар с высокой температурой (до 400—650 градусов Цельсия) и давлением (от единиц до десятков МПа) подаётся через паропровод в турбогенератор — совмещённые паровую турбину и электрогенератор. В многоступенчатой паровой турбине тепловая энергия пара частично превращается в механическую энергию вращения вала, на котором установлен электрический генератор. В ТЭЦ часть тепловой энергии пара также используется в сетевых подогревателях.
В ряде теплоэлектростанций получила распространение газотурбинная схема, в которой полученная при сжигании газообразного или жидкого топлива смесь горячих газов непосредственно вращает турбину газотурбинной установки, ось которой соединяется с электрогенератором. После турбины газы остаются достаточно горячими для полезного использования в котле-утилизаторе для питания паросилового двигателя (парогазовая установка) или для целей теплоснабжения (Газотурбинная ТЭЦ).
Первая теплоэлектростанция «Pearl Street Station» появилась в Нью-Йорке на Перл-стрит в 1882 году[1][2].
Типы
- Котлотурбинные электростанции
- Конденсационные электростанции (КЭС, исторически получили название ГРЭС — государственная районная электростанция)
- Теплоэлектроцентрали (теплофикационные электростанции, ТЭЦ)
- Газотурбинные электростанции
- Электростанции на базе парогазовых установок
- Электростанции на основе поршневых двигателей
- С воспламенением от сжатия (дизель)
- C воспламенением от искры
- Комбинированного цикла
Современные ТЭС делятся на два типа:
- С поперечными связями. Основной агрегат по пару и воде связаны между собой
- С блочной компоновкой. При таком типе основное оборудование описывается отдельным технологическим процессом в пределах каждого энергоблока.
Организация управления технологическим процессом ТЭС
Для осуществления управления технологического процесса ТЭЦ необходимо учитывать изменение производительности первоисточников энергии и их состоянием, в зависимости от электрической нагрузки.
Основными факторами, влияющими на организацию управления ТП ТЭС являются:
- организационная структура оперативно-диспетчерского управления;
- комплекс технических средств автоматизации;
- эргономика рабочего места оператора;
- композиционное решение оперативно-диспетчерских постов управления;
- существующий уровень автоматизации.
Реализация и концепции построения АСУ ТП ТЭС
Одна из основных задач управления технологическим процессом (ТП) на ТЭС состоит в поддержании непрерывною соответствия между количествами вырабатываемой и потребляемой энергии. Решение этой задачи может осуществляться по частям с помощью автономных АСР[уточнить] парового котла, турбины и электрического генератора.
Состав функций АСУ ТП:
- Информационные функции АСУ ТП по энергоблокам:
- Оперативный контроль
- Технологическая сигнализация
- Расчёт технико-экономических показателей
- Определение достоверности информации
- Диагностика состояния оборудования
- Регистрация аварийных положений
- Формирование банков данных
- Функции управления АСУ ТП по энергоблоку
- Статическая оптимизация режимов работы энергооборудования
- Исследование объекта управления
- Имитация экстремальных условий
- Информационные функции АСУ ТП по ТЭС
- Общестанционный контроль
- Расчёт общестанционных ТЭП
- Контроль достоверности информации
- Регистрация общестанционных аварий
- Обмен оперативно-диспетчерской информацией с АСУ вышестоящих и нижестоящих уровней
- Формирование развитых баз данных
- Функции управления АСУ ТП по ТЭС
- Оптимальное распределение электрических нагрузок между энергоблоками
- Оптимальное распределение экологических нагрузок между энергоблоками
- Выбор состава работающего оборудования энергоблоков
- Дискретное и непрерывно-дискретное управление вспомогательным оборудованием
- Выполнение логических операций по переключениям в главной электрической схеме станции
- Групповое управление автоматическими системами регулирования возбуждения электрических генераторов[3]
Функционально-групповое управление (ФГУ)
Осуществляется путём декомпозиции и агрегирования, для разделения энергоблока на отдельные элементы или участки для децентрализованного управления ими. В результате ФГУ повышается надёжность и точность автоматизированной системы управления энергоблока в целом. Деление на функциональные группы условное, однако оно облегчает работу оперативно-обслуживающего персонала.
Примеры перечня ФГ для мощного моноблока с прямоточным котлом и конденсационной турбины[3]:
по котлу:
- питания водой,
- полами твёрдого пылевидного топлива,
- подачи жидкого (газообразного) топлива,
- подачи и подогрева воздуха,
- розжига растопочных горелок,
- удаления и очистки дымовых газов,
- подавления вредных выбросов,
- пароперегреватели;
по генератору:
- система охлаждения,
- система возбуждения,
- система синхронизации;
по турбине и вспомогательному оборудованию:
- система снабжения смазочным маслом
- система снабжения регулирующей жидкостью (аккумуляторный бак, центральный насос, устройства распределения и т. п.)
- система снабжения паром для прогрева соединительных трубопроводов в пределах турбины,
- система снабжении турбины перегретым паром (ГПЗ, паровые байпасы, стопорный и регулирующий клапаны, АСР частоты вращения и т. п.),
- вакуумно-уплотнительные устройства (пусковой и рабочий -эжекторы, система лабиринтовых уплотнений и т. п.),
- охладительная установка (конденсатор, циркуляционные насосы и т. п.),
- конденсатные насосы,
- блочная обессоливающая установка,
- питательно-деаэраторная установка,
- подогреватели среднего давления,
- подогреватели высокого давления.
Экономическая эффективность от автоматизации теплового оборудования ТЭС
Все нововведения полезны, если они экономически выгодны, поэтому введение автоматизации на ТЭС следует производить учитывая экономическую эффективность.
Автоматизация в результате экономит следующие аспекты затрат на ТЭС:
- Изменение (прирост) КПД установки
- Изменение (прирост) выработки электроэнергии
- Изменение (уменьшение) расхода тепловой и электрической энергии на собственные нужды.
Математические модели и методы, используемые в задачах управления ТЭС
Технологический процесс на ТС заключается в поэтапном преобразовании различных видов энергии (при этом, технологический процесс имеет особенность: конечный продукт — электроэнергия — не подлежит складированию). Косвенным показателем соответствия между паропроизводительностью котла мощностью турбины служит давление перегретого пара.
Для описания технологических процессов и формирования критериев управления составляются математические модели. Их изображают в форме уравнений.
В качестве объекта управления, характеризующего технологический процесс на ТЭС в целом, обычно выбирают типичный энергоблок. Технологический процесс, протекающий в таком блоке, можно представить в виде двух последовательных процессов: в паровом котле и турбогенераторе.[4]
Экологические аспекты использования
Энергетика является одним из тех секторов мировой экономики, изменения в которых необходимы, чтобы избежать неприемлемых последствий глобального потепления. Оценки энергоинфраструктуры на основе глобального эмиссионного бюджета CO2 показывают, что после 2017 года в мире не должны вводиться в строй новые электростанции, работающие на ископаемом топливе.[5]
Тепловые электростанции зачастую становятся «мишенями» для радикально настроенных климатических активистов.[6][7]
См. также
Литература
- Аракелян Э. К., Старшинов В. А. Повышение экономичности и маневренности оборудования тепловых электростанций. — М.: МЭИ, 1993. — 328 с. — ISBN 5-7046-0042-5.
Примечания
- Global Edison — History
- Тепловые электростанции
- ISBN 9785903072859 Автоматизация технологических процессов и производств в теплоэнергетике: учебник для студентов вузов / Г. П. Плетнев. — 4-е изд., стереот. — М.: Издательский дом МЭИ, 2007. — с. 87-90
- Плетнев Г. П Автоматизированное управление объектами тепловых электростанций: Учебн. пособие для вузов. — М.: Энергоиздат, 1981. —368 е., ил.
- Pfeiffer et al, The ‘2°C capital stock’ for electricity generation: Committed cumulative carbon emissions from the electricity generation sector and the transition to a green economy Архивировано 20 октября 2007 года. (англ.)
- Drax coal train hijackers sentenced (англ.) The Guardian, Friday 4 September 2009
- Ten years since Climate Camp: return to Drax Архивная копия от 28 января 2017 на Wayback Machine (англ.) Corporate Watch. Tue, 11/10/2016