Теорема Пуанкаре — Бендиксона

Теорема Пуанкаре — Бендиксона — теорема в теории динамических систем, описывающая возможные типы предельного поведения траектории векторного поля на плоскости или на сфере. Теорема утверждает, что предельное поведение траекторий в этом случае регулярно, и не может быть хаотическим (невозможно даже наличие всюду плотных орбит).

Формулировка теоремы

Пусть задано -гладкое векторное поле на сфере или на плоскости или в некоторой области плоскости (в последнем случае, направленное внутрь на границе области), имеющее лишь конечное число особых точек. Тогда ω-предельное множество любой траектории — это либо (1) особая точка, либо (2) периодическая траектория, либо (3) полицикл (объединение особых точек и соединяющих их отрезков траекторий). Аналогичное утверждение имеет место и для α-предельных множеств.

Замечания

См. также

Примечания

    Литература

    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.