Теорема Мардена

Теорема Мардена даёт геометрическую связь между нулями комплексного многочлена третьей степени и нулями его производной:

Теорема Мардена

Предположим, что нули z1, z2, z3 многочлена третьей степени неколлинеарны. Существует единственный эллипс, вписанный в треугольник с вершинами z1, z2, z3 и касающийся его сторон в серединах: эллипс Штейнера. Фокусы этого эллипса и есть нули производной .

Марден приписывает теорему Йоргу Сибеку (нем. Jörg Siebeck)[1] и приводит 9 ссылок на статьи, которые включают варианты данной теоремы.

Примечания

  1. Siebeck, Jörg (1864), Über eine neue analytische Behandlungweise der Brennpunkte, Journal für die reine und angewandte Mathematik Т. 64: 175-182, ISSN 0075-4102 (нем.)

Ссылки

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.