Структурная индукция
Структурная индукция — конструктивный метод математического доказательства, обобщающий математическую индукцию (применяемую над натуральным рядом) на произвольные рекурсивно определённые частично упорядоченные совокупности. Структурная рекурсия — реализация структурной индукции в форме определения, процедуры доказательства или программы, обеспечивающая индукционный переход над частично упорядоченной совокупностью.
Изначально метод использовался в математической логике, также нашёл применение в теории графов, комбинаторике, общей алгебре, математической лингвистике, но наибольшее распространение как самостоятельно изучаемый метод получил в теоретической информатике[1], где применяется в вопросах семантики языков программирования, формальной верификации, вычислительной сложности, функционального программирования.
В отличие от нётеровой индукции — наиболее общей формы математической индукции, применяемой над произвольными фундированными множествами, — в понятии о структурной индукции подразумевается конструктивный характер, вычислительная реализация. При этом фундированность совокупности — свойство, необходимое для рекурсивной определяемости[2], таким образом, структурную рекурсию можно считать частным вариантом нётеровой индукции[1].
История
Использование метода встречается по крайней мере с 1950-х годов, в частности, в доказательстве теоремы Лося об ультрапроизведениях применяется индукция по построению формулы, при этом сам метод особым образом явно не назывался[3]. В те же годы метод применялся в теории моделей для доказательств над цепями моделей, считается, что появление термина «структурная индукция» связано именно с этими доказательствами[4]. Карри поделил все виды применения индукции в математике на два типа — дедуктивную индукцию и структурную индукцию, классическую индукцию над натуральными числами считая подтипом последней[5].
С другой стороны, не позднее начала 1950-х годов метод трансфинитной индукции уже распространялся на произвольные частично упорядоченные множества, удовлетворяющие условию обрыва возрастающих цепей (что эквивалентно фундированности[6]), в то же время Генкин отсылал к возможности индукции «в некоторых типах частично-упорядоченных систем»[7]. В 1960-е годы метод закрепился под наименованием нётеровой индукции (по аналогии с нётеровым кольцом, в котором выполнено условие обрыва возрастающих цепей идеалов)[8].
Явное определение структурной индукции, ссылающееся как на рекурсивную определимость, так и на нётерову индукцию, дано Бёрстоллом (англ. Rod Burstall) в конце 1960-х годов[9], и в литературе по информатике именно к нему относят введение метода[10][11].
В дальнейшем в информатике возникло несколько направлений, основывающихся на структурной индукции как базовом принципе, в частности, таковы структурная операционная семантика языков программирования Плоткина (англ. Gordon Plotkin)[12], серия индуктивных методов формальной верификации[13][14], структурно-рекурсивный язык запросов UnQL[15]. В 1990-е годы в теоретической информатике получил распространение метод коиндукции, применяемый над нефундированными (как правило, бесконечными) структурами и считающийся двойственным структурной индукции[16].
В связи с широким применением в теоретической информатике и немногочисленностью упоминаний в математической литературе, по состоянию на 2010-е годы считается, что выделение структурной индукции как особого метода в большей степени характерно для информатики, нежели для математики[17].
Определение
Наиболее общее определение[18][19] вводится для класса структур (без уточнения природы структур ) с отношением частичного порядка между структурами , с условием минимального элемента в и условием наличия для каждой вполне упорядоченной совокупности из всех строго предшествующих ей структур: . Принцип структурной индукции в этом случае формулируется следующим образом: если выполнение свойства для следует из выполнения свойства для всех строго предшествующих ей структур, то свойство выполнено и для всех структур класса; символически (в обозначениях систем натурального вывода):
- .
Рекурсивность в этом определении реализуется совокупностью вложенных структур: как только есть способ определять выводить свойства структуры исходя из свойств всех предшествующих ей, можно говорить о рекурсивной определимости структуры.
В литературе по информатике распространена и другая форма определения структурной индукции, ориентированная на рекурсию по построению[20], в ней рассматривается как класс объектов, определённых над некоторым множеством атомарных элементов и набором операций , при этом каждый объект — результат последовательного применения операций к атомарным элементам. В этой формулировке принцип утверждает, что свойство выполняется для всех объектов , как только имеет место для всех атомарных элементов и для каждой операции из выполнения свойства для элементов следует выполнение свойства для :
- .
Роль отношения частичного порядка из общего определения здесь играет отношение включения по построению: [21].
Примеры
Введение принципа в информатику мотивировалось рекурсивным характером таких структур данных, как списки и деревья[22]. Первый пример над списком, приводимый Бёрстоллом — утверждение о свойствах свёртки списков с элементами типа двухместной функцией и начальным элементом свёртки в связи с конкатенацией списков :
- .
Структурная индукция в доказательстве этого утверждения ведётся от пустых списков — если , то:
- левая часть, по определению конкатенации: ,
- правая часть, по определению свёртки:
и в случае, если список непуст, и начинается элементом , то:
- левая часть, по определениям конкатенации и свёртки: ,
- правая часть, по определению свёртки и предположению индукции: .
Предположение индукции основывается на истинности утверждения для и включении .
В теории графов структурная индукция часто применяется для доказательств утверждений о многодольных графах (с использованием перехода от -дольных к -дольным), в теоремах об амальгамировании графов, свойств деревьев и лесов[23]. Другие структуры в математике, для которых применяется структурная индукция — перестановки, матрицы и их тензорные произведения, конструкции из геометрических фигур в комбинаторной геометрии.
Типичное применение в математической логике и универсальной алгебре — структурная индукция по построению формул из атомарных термов, например, показывается, что выполнение требуемого свойства для термов и влечёт , , и так далее. Также по построению формул работают многие структурно-индуктивные доказательства в теории автоматов, математической лингвистике; для доказательства синтаксической корректности компьютерных программ широко используется структурная индукция по БНФ-определению языка (иногда даже выделяется в отдельный подтип — БНФ-индукция[24]).
Примечания
- Штеффен, Рютинг, Хут, 2018, p. 179.
- Рекурсия — статья из Математической энциклопедии. Н. В. Белякин
- J. Loś Quelques remarques, théorèmes et problèmes sur les classes définissables d'algèbres // Studies in Logic and the Foundations of Mathematics. — 1955. — Vol. 16. — P. 98—113. — doi:10.1016/S0049-237X(09)70306-4.
- Гундерсон, 2011, p. 48.
- Карри, 1969, при этом указывая: «Обычная математическая индукция с настоящей точки зрения является структурной индукцией по системе самов; она так часто встречается <…> что стоит считать её третьим видом — натуральной индукцией».
- А. Г. Курош. Лекции по общей алгебре. — М.: Физматлит, 1962. — С. 21—22 (§5. Условие минимальности). — 399 с.
- Л. Генкин. О математической индукции. — М.: Физматгиз, 1962. — С. 36 (заключение). — 36 с.
- П. Кон. Универсальная алгебра. — М.: Мир, 1969. — С. 33—34. — 351 с.
- Бёрстолл, 1969.
- Tools and Notions for Program Construction. An Advanced Course / D. Néel (ed.). — Cambridge University Press, 1982. — С. 196. — 400 с. — ISBN 0-512-24801-9.
- О. А. Ильичёва. Формальное описание семантики языков программирования. — Ростов-на-Дону: ЮФУ, 2007. — С. 99—100. — 223 с.
- G. Plotkin. The origins of structural operational semantics // The Journal of Logic and Algebraic Programming. — 2004. — P. 3—15. — doi:10.1016/j.jlap.2004.03.009.
- Z. Manna, S. Ness, J. Vuillemin. Inductive methods for proving properties of programs // Communications of the ACM. — 1973. — Vol. 16, № 8. — P. 491—502. — doi:10.1145/355609.362336.
- C. Reynolds, R. Yeh. Induction as the basis for program verification // Proceedings of the 2nd international conference on Software engineering (ICSE ’76). — Los Alamitos: IEEE Computer Society Press, 1976. — С. 389.
- P. Buneman, M. Fernandez, D. Suciu. UnQL: a query language and algebra for semistructured data based on structural recursion // The VLDB Journal. — 2000. — Vol. 9, № 1. — P. 76—110. — doi:10.1007/s007780050084.
- R. Milner, M. Tofte. Co-induction in relational semantics // Theoretical Computer Science. — Vol. 87, № 1. — P. 209—220.
- Гундерсон, 2011, p. 48: «In the rest of mathematics, the term “structural induction” is rarely used outside of computer science applications — as a friend once said, “it’s all just induction”».
- Бёрстолл, 1969, p. 42.
- Гундерсон, 2011, p. 42.
- Штеффен, Рютинг, Хут, 2018, pp. 177—178.
- Штеффен, Рютинг, Хут, 2018, pp. 178.
- Бёрстолл, 1969, p. 43, 45.
- Гундерсон, 2011, p. 49, 257, 384, 245.
- Штеффен, Рютинг, Хут, 2018, p. 214.
Литература
- B. Steffen, O. Rüthing, M. Huth. Mathematical Foundations of Advanced Informatics. — Springer, 2018. — Vol. 1. Inductive Approaches. — ISBN 978-3-319-68396-6.
- R. M. Burstall. Proving properties of programs by structural induction // The Computer Journal. — 1969. — Vol. 12, № 1. — P. 41–48. — doi:10.1093/comjnl/12.1.41.
- D. Gunderson. Handbook of Mathematical Induction. Theory and Applications. — Boca Raton: CRC, 2011. — 893 с. — ISBN 978-1-4200-9364-3.
- Х. Карри. Основания математической логики. — М.: Мир, 1969. — 567 с.