Стационарное состояние (математика)

Стационарное состояние в теории динамических систем — это такое состояние системы или процесса, в котором динамика переменных, описывающих поведение системы или процесса и называемых переменными состояниями, не меняется во времени (в отличие от переходного процесса). Синонимы: стационарное решение, стационарный режим, стационарное движение, установившиеся движения.[B: 1][A: 1]

Общие сведения

Стационарное движение есть предельное движение системы, то есть то, к которому система стремится; причём состояние покоя также рассматривается как частный случай стационарного движения.[1] Именно стационарные движения системы являются наиболее характерными для поведения системы в течение длительных промежутков времени.[1]

Принято различать устойчивое и неустойчивое стационарное состояние.[2][A: 1]

Примерами стационарных состояний могут служить: фокус, узел, седло, предельный цикл.[2]

См. также

Примечания

  1. Андронов, 1981, Введение, с. 15-34.
  2. Андронов, 1981, Глава I. линейные системы, с. 35-102.

Литература

  • Книги
  1. Андронов А. А., Витт А. А., Хайкин С. Э. Теория колебаний. — 2-е изд., перераб. и испр.. М.: Наука, 1981. — 918 с.
  • Статьи
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.