Парахор

Парахор — комплексное физико-химическое свойство вещества, связывающее поверхностное натяжение жидкости с плотностью жидкости и пара.

Атомные доли парахора Π при расчете методом Мак-Гоуэна (Дж1/4•см5/2•моль−1)
ЭлементΠЭлементΠЭлементΠ
Al1,07I1,76S1,19
As1,46Ir1,51Se1,37
B0,89Mn1,46Sb1,72
Bi1,96N0,75Si1,25
Br1,35Nb1,58Sn1,71
C0,89Np1,83Ta1,60
Cd1,46O0,64Tc1,57
Cl1,10Os1,60Te1,73
Cr1,42P1,24Ti1,60
F0,60Pb1,96U1,90
Ga1,21Po1,81V1,55
Ge1,44Pt1,67W1,56
H0,47Pu1,80Xe1,64
Hg1,49Re1,60Zn1,16

Определение

Изначально парахор рассматривался как полуэмпирическая константа, но в последние годы его физический смысл и многие особенности были обоснованы в рамках теории межмолекулярного взаимодействия и модели анизотропной поверхности жидкости ([1],[2], ссылки даны по [3]).

Введение понятия парахора связано с попытками найти такие свойства атомов и химических связей, которые были бы аддитивными, то есть величина такого свойства для молекулы являлась бы суммой соответствующих величин для атомов и химических связей. Предположение, что такой величиной мог бы являться молекулярный объём (то есть он мог бы быть выражен как сумма атомных объёмов), не всегда подтверждалось опытом. В 1924 году Сэмюэль Сегден попытался объяснить это тем, что недостаток аддитивности здесь связан с некоторым неодинаковым для различных веществ «внутренним давлением», действующим на молекулы и проявляющимся в явлениях поверхностного натяжения. В качестве «более аддитивной» альтернативы собственно молекулярному или атомному объёму он предложил парахор, как молекулярный или атомный объём, измеренный при постоянном значении поверхностного натяжения, то есть при стандартном внутреннем давлении[4].

Парахор может быть рассчитан по формуле[3]:

где М — молярная масса, г/моль
 — поверхностное натяжение, мДж/м²
 — плотность жидкости, г/см³
 — плотность пара, г/см³. Если температура не выше температуры кипения, плотностью пара можно пренебречь.

Величина парахора практически не зависит от температуры в весьма широких пределах.

Парахор — конститутивная величина; парахор соединения может быть определен по его структурной формуле — исходя из количества атомов, групп, связей и т. п. В некоторых случаях (в зависимости от метода расчета и требуемой точности) может быть достаточно минимума сведений о соединении, что особенно важно при оценке свойств малоизученных веществ.

Парахор в качестве параметра входит во многие уравнения, описывающие свойства жидкости и газа, может быть использован для прогнозирования свойств веществ, для установления структуры органических соединений.

Методы расчета парахора

При расчете парахора методом Сегдена и методом Квейла используются табличные данные[5] о доле парахора для различных атомов, групп, связей молекулы и её структурных особенностей (в методе Квейла используется несколько более подробная таблица). Расчетная формула:

где  — число атомов, связей и т. п. определенного типа а  — соответствующая табличная доля парахора. Отметим, что одной стехиометрической формуле могут соответствовать несколько структурных, что для малоизученных соединений может привести к некорректному расчету парахора методом Сегдена. В то же время, определив парахор экспериментальным путём, можно оценить, расчет по какой структурной формуле дает более точное его значение, то есть какая формула в большей степени соответствует действительности.

Расчет методом Мак-Гоуэна требует меньшего количества информации о структуре соединения, достаточно знать лишь общее число связей. Расчетная формула:

где l — число связей в молекуле.

Атомные доли парахора элементов для расчета по методу Мак-Гоуэна представлены в таблице (по данным[6]).

Погрешность расчета парахора аддитивным методом составляет ±1,5 — ±4,0 % в зависимости от полярности вещества[3]; для веществ с заметной полярностью она может достигать ±10 %[6].

Для многих элементов атомные доли парахора неизвестны. В таком случае величина парахора может быть предсказана без использования аддитивных методов, по различным данным — температуре кипения и молярному объёму жидкости в точке кипения, критической температуре вещества и т. п.[3]

Литература

  1. Celeda J. // Coll. Czech. Chem. Commun. — 1984. — V. 49. — № 2. — P. 327—344
  2. Paquette L. J., Goldack D. E. // J. Colloid. A. Interface Sci. — 1983. — V. 92. — № 1. — P. 154—160
  3. Морачевский А. Г., Сладков И. Б. Физико-химические свойства молекулярных неорганических соединений (экспериментальные данные и методы расчета): Справ. изд. — 2-е изд., перераб. и доп. — СПб. : Химия, 1996. — 312 с. — ISBN 5-7245-0817-6
  4. Ремик А. Электронные представления в органической химии. — М. : ИИЛ, 1950. — 553 с.
  5. Бретшнайдер Ст. Свойства жидкостей и газов. — М.-Л. : Химия, 1966. — стр. 66-67
  6. Морачевский А. Г., Сладков И. Б. Термодинамические расчеты в металлургии: Справ. изд. — 2-е изд., перераб. и доп. — М. : Металлургия, 1993. — С. 114—119

Ссылки

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.