Неравенство Чебышёва для сумм

Неравенство Чебышёва для сумм, носящее имя Пафнутия Львовича Чебышёва, утверждает, что если

и

то

Аналогично, если

и

то

Доказательство

Неравенство Чебышёва для сумм легко выводится из перестановочного неравенства:

Предположим, что

и

В виду перестановочного неравенства выражение

является максимально возможным значением скалярного произведения рассматриваемых последовательностей. Суммируя неравенства

получаем

или, разделив на :

Непрерывный случай

Существует также непрерывный аналог неравенства Чебышёва для сумм:

Если f(x) и g(x) — это вещественные интегрируемые на [0,1] функции, возрастающие или убывающие одновременно, то

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.