Непрерывная симметрия

Непрерывная симметрия (англ. continuous symmetry) — интуитивное понятие, означающее симметрию, то есть неизменность, относительно непрерывного семейства преобразований. Этим это понятие отличается от дискретной симметрии, например, симметрии отражения, инвариантной относительно одного, нескольких или дискретного семейства преобразований.

Примеры непрерывной симметрии

Круговая симметрия

Трансляционная симметрия

Примеры

Примером непрерывной симметрии является круговая симметрия, то есть вращательная симметрия относительно любого угла. Трансляционная симметрия на произвольный вектор в заданном направлении также является непрерывной. В трёхмерном пространстве примером непрерывной симметрии является сферическая симметрия, которая означает, что вид тела не изменится, если его вращать в пространстве на произвольные углы, сохраняя одну точку на месте.

Формализация

Понятие непрерывной симметрии формализуется с использованием понятий топологической группы, группы Ли и действий группы. Для большинства практических целей непрерывную симметрию можно моделировать с помощью действия группы, сохраняющего некоторую структуру. В частности, пусть является функцией, G является группой, действующей на X, тогда подгруппа является симметрией f, если для всех .

Подгруппы с одним параметром

Наиболее простые движения образуют однопараметрическую подгруппу группы Ли, например евклидову группу трёхмерного пространства. Например, перенос параллельно оси x на u единиц при варьировании u является однопараметрической группой движений. Вращение вокруг оси z также является однопараметрической группой.

Теорема Нётер

Непрерывная симметрия играет основную роль в теореме Нётер теоретической физики в выводе законов сохранения из принципов симметрии, в особенности непрерывной. С развитием квантовой теории поля поиск непрерывных симметрий приобретает особенную важность.

Ссылки

  • William H. Barker, Roger Howe (2007), Continuous Symmetry: from Euclid to Klein
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.