Метод бесконечного спуска

Метод бесконечного спуска — метод доказательства от противного, основанный на том, что множество натуральных чисел вполне упорядочено. Существенно развит Пьером Ферма.

Часто используется для доказательства того, что у некоторого уравнения нет решений по следующей схеме: из предположения, что решение существует, доказывается существование другого решения, которое в некотором смысле меньше, тогда можно построить бесконечную цепочку решений, каждое из которых меньше предыдущего, это вызывает противоречие с тем, что в любом непустом подмножестве натуральных чисел есть минимальный элемент, значит предположение о существовании начального решения неверно.

Пример

Для доказательства иррациональности с использованием метода бесконечного спуска оно предполагается рациональным числом:

для некоторых натуральных чисел и . Тогда квадрат этого числа равен:

,

то есть . Это означает, что  — чётное число. Для : , при подстановке вместо : . Деление на 2 обеих частей даёт: , значит,  — также чётное число. Таким образом, исходные числа и можно одновременно разделить на 2 и получить другое представление . С полученными числами можно проделать ту же операцию, и так далее бесконечное число раз. Таким образом строится бесконечно убывающая последовательность натуральных чисел, что невозможно. То есть, не является рациональным числом.

Ссылки

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.