Мелодия постоянного спектра
Постоянный тембр с постоянной высотой тона характеризуется спектром. Наряду с музыкальным произведением, спектр, измеряемый в узком временном окне, зависит от мелодии и возможных эффектов инструментов. Поэтому может показаться парадоксальным, что постоянный спектр может восприниматься как мелодия, а не как штамп.
Парадокс [1] заключается в том, что ухо не является абстрактным спектрографом: оно «вычисляет» преобразование Фурье звукового сигнала в узком временном окне, но более медленные изменения рассматриваются как временная эволюция, а не как высота тона.
Однако приведенный выше пример парадоксальной мелодии не содержит инфразвука (т. е. чистый тон периода медленнее, чем временное окно). Второй парадокс состоит в том, что, когда две высоты тона очень близки, они создают ритм. Если период этого импульса длиннее окна интегрирования, он рассматривается как синусоидальное отклонение среднего рейтинга: sin (2π (f + ε) t) + sin (2π (f-ε) t) = sin (2πft ) cos (2πεt), где 1 / ε - медленный период.
Нынешний спектр состоит из множества частот, которые вместе образуют биения, что приводит к наложению различных высот тонов, которые постепенно исчезают в разные моменты времени и темпы, формируя мелодию.
MATLAB / Scilab / Octave коды
Вот программа, используемая для генерации парадоксальной мелодии:
n=10; length=20; harmon=10; df=0.1; t=(1:length*44100)/44100; y=0; for i = 0:n, for j = 1:harmon, y=y+sin(2*3.1415927*(55+i*df)*j*t); end; end; sound(y/(n*harmon),44100);
Примечания
- A. Chaigne (1988), “Psychoacoustique”, ENST, 114 pages.