Локально выпуклое пространство

Локально выпуклое пространстволинейное топологическое пространство с системой полунорм, удовлетворяющей некоторым условиям.

Определение

Линейное топологическое пространство называется локально выпуклым пространством, если существует семейство полунорм на , удовлетворяющее двум условиям:

  • Если для каждого , то .
  • Если для произвольной точки пространства , любой конечной системы полунорм из и любой конечной системы положительных вещественных чисел рассмотреть (выпуклые) множества, состоящие из элементов , удовлетворяющих условию с , то все такие множества образуют базу топологии в [1].

Свойства

  • Локально выпуклые пространства хаусдорфовы.
  • Последовательность точек локально выпуклого пространства сходится к в том и только том случае, если для каждой полунормы выполняется соотношение .

Примечания

Литература

  • Гаевский Х., Грёгер К., Захариас К. Нелинейные операторные уравнения и операторные дифференциальные уравнения. М.: Мир, 1978. — 336 с.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.