Критерий Крамера — Мизеса — Смирнова

Классический непараметрический критерий согласия Крамера — Мизеса — Смирнова предназначен для проверки простых гипотез о принадлежности анализируемой выборки полностью известному закону, то есть для проверки гипотез вида с известным вектором параметров теоретического закона. В критерии Крамера — Мизеса — Смирнова используется статистика вида

,

где  — объем выборки,  — упорядоченные по возрастанию элементы выборки.

При справедливости простой проверяемой гипотезы статистика критерия подчиняется распределению вида [1].

При проверке простых гипотез критерий является свободным от распределения, то есть не зависит от вида закона, с которым проверяется согласие.

Проверяемая гипотеза отклоняется при больших значениях статистики. Процентные точки распределения приведены в [1, 2].

Проверка сложных гипотез

При проверке сложных гипотез вида , где оценка скалярного или векторного параметра распределения вычисляется по той же самой выборке, непараметрические критерии согласия теряют свойство свободы от распределения [3, 4].

При проверке сложных гипотез распределения статистик непараметрических критериев согласия зависят от ряда факторов: от вида наблюдаемого закона , соответствующего справедливой проверяемой гипотезе ; от типа оцениваемого параметра и числа оцениваемых параметров; в некоторых случаях от конкретного значения параметра (например, в случае семейств гамма- и бета-распределений); от метода оценивания параметров. Различия в предельных распределениях той же самой статистики при проверке простых и сложных гипотез настолько существенны, что пренебрегать этим ни в коем случае нельзя.

См. также

Литература

  1. Большев Л. Н., Смирнов Н. В. Таблицы математической статистики. — М.: Наука, 1983. — 416 с.
  2. Р 50.1.037-2002. Рекомендации по стандартизации. Прикладная статистика. Правила проверки согласия опытного распределения с теоретическим. Часть II. Непараметрические критерии. — М.: Изд-во стандартов. 2002. — 64 с.
  3. Kac M., Kiefer J., Wolfowitz J. On Tests of Normality and Other Tests of Goodness of Fit Based on Distance Methods // Ann. Math. Stat., 1955. V.26. — P.189-211.
  4. Мартынов Г. В. Критерии омега-квадрат. — М.: Наука, 1978. — 80 с.

Ссылки

О применении критерия при проверке сложных гипотез:

О мощности критериев согласия:

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.