Кольцо множеств
Кольцо множеств — непустая система множеств , замкнутая относительно пересечения и симметрической разности конечного числа элементов. Это значит, что для любых элементов и из кольца элементы и тоже будут лежать в кольце.
С точки зрения общей алгебры кольцо множеств — ассоциативное коммутативное кольцо с операцией симметрической разности в роли сложения и пересечения в роли умножения. В роли нейтрального элемента по сложению выступает, очевидно, пустое множество. Нейтрального элемента по умножению в кольце множеств может и не быть. Например, не имеет нейтрального элемента по умножению кольцо всех ограниченных подмножеств числовой прямой[1].
Некоторые свойства:
- пустое множество принадлежит любому кольцу (так как );
- объединение конечного числа элементов кольца принадлежит кольцу, так как ;
- разность элементов кольца также принадлежит кольцу, так как .
См. также
Примечания
- Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа. М.: Физматлит, 2009 — с. 48
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.