Керальская школа астрономии и математики

Кера́льская школа астрономии и математики — научная школа, которая существовала в Индии в XIV—XVII веках и внесла заметный вклад в астрономию и математику.

История

После завоевания мусульманами северной Индии в XI веке (Махмуд Газневи) центр научной деятельности индийцев переместился в южную провинцию Керала. Основателем школы стал Мадхава из Сангамаграмы. Среди других видных учёных керальской школы:

Последними представителями школы были в XVII веке Ачьюта Пишарати и Нараяна Бхаттатири. Свои результаты керальцы публиковали в трактатах (сиддхантах) на санскрите, излагая их чаще всего без доказательств, нередко стихами.

Преимущественным направлением исследований в Керале была астрономия, но при решении астрономических задач были сделаны важные математические открытия. В частности, опередив европейских математиков на два века, учёные школы получили разложение тригонометрических функций в бесконечные степенные ряды[1]. В Европе их достижения долго оставались неизвестными и были обнаружены историками только в XIX веке[2].

Научные достижения

Астрономия

Астрономы Керальской школы с высокой точностью измерили величину предварения равноденствий, а также продолжительность года, лунного месяца и других астрономических констант.

В 1500 году Нилаканта Сомаяджи в своей «Тантрасанграхе» предложил модификацию системы мира, ранее описанной Ариабхатой. В своей Ариабхатавахьязе, комментариях к Ариабхатье, он предложил модель, где планеты Меркурий, Венера, Марс, Юпитер и Сатурн обращаются вокруг Солнца, а оно, в свою очередь, вокруг Земли[3]. Эта гео-гелиоцентрическая система напоминает предложенную Тихо Браге в конце XVI века. Большинство астрономов Керальской школы приняли его модель.

Математика

Керальская школа, как и вся индийская математика, имела заметный вычислительный уклон. Например, учёные постоянно работали над вычислением числа со всё возрастающей точностью. Для астрономических вычислений им удалось впервые найти разложение тригонометрических и иных функций в бесконечные ряды. Общей теории таких разложений и дальнейшего продвижения в направлении математического анализа у керальцев не было.

Бесконечные ряды приводятся в четырёх керальских сиддхантах[1]:

  1. «Научный справочник» (Тантрасанграха), опубликован Нилакантой.
  2. «Техника действий» (Каранападдхати).
  3. «Нить светящихся жемчужин» (Садратанамала).
  4. «Объяснительный комментарий» (Юкти-бхаша), это комментарий к «Тантрасанграхе».

Кроме тригонометрических функций, в сиддхантах приводится разложение алгебраической дроби, впрочем, известное ещё Ибн аль-Хайсаму (XI век)[4][5]:

если

Разложения керальцами тригонометрических функций, вероятно, были получены ещё Мадхавой, но появились впервые в трактате Нилаканты «Тантрасанграха» и в современных обозначениях имели вид[2][6]:

где

При ряды упрощаются и принимают более распространённый вид:

Для получения этих формул было проведено спрямление дуги окружности[7][1]. В Европе ряд для арктангенса впервые опубликовал Джеймс Грегори в 1671 году, а ряды для синуса и косинуса — Исаак Ньютон в 1666 году..

Из ряда для арктангенса легко получить[2] ряд для вычисления числа :

Ряд этот сходится медленно, поэтому для практических расчётов его преобразуют к виду[2]:

Как подсчитал Нилаканта, Керальцы получили также из этих рядов довольно точные приближения числа в виде дробей.

Из других математических достижений керальской школы можно упомянуть, что Нилаканта уверенно заявил о несоизмеримости длины окружности с её диаметром, то есть, выражаясь современным языком, что число иррационально[1].

См. также

Литература

  • История математики. С древнейших времен до начала Нового времени // История математики / Под редакцией А. П. Юшкевича, в трёх томах. М.: Наука, 1970. — Т. I.
  • Бахмутская Э. Я. Степенные ряды для sint и cost в работах индийских математиков XV - XVIII вв // Историко-математические исследования. М.: Физматгиз, 1960. № 13. С. 325—334.
  • Володарский А. И. Очерки истории средневековой индийской математики. Либроком, 2009, 184 с. (Физико-математическое наследие: математика). ISBN 978-5-397-00474-9.
  • Паплаускас А. Б. Доньютоновский период развития бесконечных рядов. Часть I // Историко-математические исследования. М.: Наука, 1973. Вып. XVIII. С. 104—131.
  • Bressoud, David. Was Calculus Invented in India? // The College Mathematics Journal (Math. Assoc. Amer.). — 2002. — Vol. 33, № 1. — P. 2–13.
  • Roy, Ranjan. Discovery of the Series Formula for by Leibniz, Gregory, and Nilakantha // Mathematics Magazine (Math. Assoc. Amer.). — 1990. — Vol. 63, № 5. — P. 291–306.

Ссылки

Примечания

  1. Паплаускас А. Б., 1973.
  2. Roy, Ranjan. 1990. Discovery of the Series Formula for by Leibniz, Gregory, and Nilakantha. Mathematics Magazine (Mathematical Association of America) 63(5):291-306.
  3. Ramasubramanian, K. Model of planetary motion in the works of Kerala astronomers (англ.) // Bulletin of the Astronomical Society of India : journal. Vol. 26. P. 11—31 [23—4]. — .
  4. Singh, A. N. On the Use of Series in Hindu Mathematics // Osiris. — 1936. Т. 1. С. 606—628. doi:10.1086/368443.
  5. Edwards, C. H., Jr. 1979. The Historical Development of the Calculus. New York: Springer-Verlag.
  6. Bressoud, David. Was Calculus Invented in India? The College Mathematics Journal (Mathematical Association of America). 33(1):2-13, 2002.
  7. История математики, том I, 1970, с. 202—203.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.