Карманный кубик

Карманный кубик (англ. Pocket Cube) — 2×2×2 разновидность кубика Рубика. Состоит из восьми частей, все из которых являются углами.

Разобранный карманный кубик
Карманный кубик, анимация.

История

Решённые версии слева направо: оригинальный Pocket Cube, кубик Eastsheen, V-кубик 2, V-кубик 2b.

В марте 1970 года Ларри Николс изобрёл «Головоломку с вращающимися в группах частями» (англ. Puzzle with Pieces Rotatable in Groups) 2×2×2 и подал заявку на её патент в Канаде. Кубик Николса держался на магнитах.

Николсу был выдан патент США 3655201 11 апреля 1972 года, за два года до того, как Рубик изобрёл свой куб.

Николс присвоил свой патент[1] своему работодателю Moleculon Research Corp., который в 1982 году подал в суд на фирму Ideal, выпустившую кубик Рубика 2×2×2. В 1984 году Ideal проиграл иск о нарушении патентных прав и подал апелляцию. В 1986 году апелляционный суд подтвердил решение о том, что кубик Рубика 2×2×2 нарушил патент Николса, но отменил решение для кубика Рубика 3×3×3[2].

Перестановки

Карманный кубик с одной наклонённой стороной

Возможна любая перестановка восьми углов (8! позиций), и семь из них могут вращаться независимо (37 позиций). Ничто не определяет ориентацию куба в пространстве, от чего число позиций уменьшается в 24 раза. Это происходит потому, что все 24 возможных положения и ориентации первого угла эквивалентны из-за отсутствия фиксированных центров. Данный фактор не появляется при вычислении перестановок кубов N×N×N, где N нечётно, ведь такие головоломки имеют фиксированные центры, которые определяют пространственную ориентацию куба. Количество возможных позиций куба составляет:

Максимальное количество ходов, необходимое для решения куба, составляет до 11 полуоборотов или четвертей оборота или только до 14 четвертей поворотов[3].

Число позиций a, для которых требуется n любых (половин или четвертей) оборотов, и число позиций q, для которых требуется только n четвертей оборотов:

n a q a(%) q(%)
0 1 1 0,000027 % 0,000027 %
1 9 6 0,00024 % 0,00016 %
2 54 27 0,0015 % 0,00073 %
3 321 120 0,0087 % 0,0033 %
4 1847 534 0,050 % 0,015 %
5 9992 2256 0,27 % 0,061 %
6 50136 8969 1,36 % 0,24 %
7 227536 33058 6,19 % 0,90 %
8 870072 114149 23,68 % 3,11 %
9 1887748 360508 51,38 % 9,81 %
10 623800 930588 16,98 % 25,33 %
11 2644 1350852 0,072 % 36,77 %
12 0 782536 0 % 21,3 %
13 0 90280 0 % 2,46 %
14 0 276 0 % 0,0075 %

Подгруппа с двумя генераторами (число позиций, созданных просто поворотами двух смежных граней) имеет порядок 29 160[4].

Методы сборки

Карманный кубик можно решить теми же методами, что и кубик Рубика 3x3x3, просто обработав его как 3x3x3 с разрешёнными (невидимыми) центрами и ребрами. Более продвинутые методы объединяют несколько шагов и требуют большего количества алгоритмов. Эти алгоритмы, предназначенные для решения куба 2x2x2, часто значительно короче и быстрее, чем те, которые используются для решения кубика 3x3x3.

Метод Ортеги[5], также называемый методом Варасано[6], является промежуточным методом. Сначала строится грань (но части могут быть переставлены неправильно), затем последний слой ориентируется (OLL) и, наконец, оба слоя переставляются (PBL). Метод Ортеги требует знания всего 12 алгоритмов.

При сборке кубика методом CLL[7] сначала строят слой (с правильной перестановкой), а затем второй слой за один шаг, используя один из 42 алгоритмов[8]. Более продвинутая версия CLL — метод TCLL, также известный как Twisty CLL. Один слой построен с правильной перестановкой аналогично обычному CLL, однако одна угловая часть может быть неправильно ориентирована. Остальная часть куба решена, а неправильный угол ориентирован за один шаг. В методе TCLL существует 83 случая, однако не все алгоритмы для их решения были созданы[9].

Самый продвинутый из методов — метод EG[10]. Он также начинается с создания слоя (в любой перестановке), а затем решает оставшуюся часть головоломки за один шаг. Этот метод требует знания 128 алгоритмов, 42 из которых являются алгоритмами CLL.

Мировые рекорды

Висенте Альбитер из Мексики собирает карманный кубик за 1,55 секунды на Mexican Open 2008.

Мировой рекорд по скорости сборки карманного кубика составляет 0,49 секунды, он был установлен Мацеем Чапевским из Польши 20 марта 2016 года на Grudziądz Open 2016 в Грудзёндзе, Польша[11].

Мировой рекорд по среднему из 5 решений (исключая самые быстрые и самые медленные) составляет 1,21 секунды, установлен Мартином Веделом Эгдалом из Дании 21 октября 2018 года на Kjeller Open 2018 в Хьеллере, Норвегия, со временем 1,06, 1,09, 1,64, 1,47 и 1,07 секунды[11].

5 лучших по одному решению[12]

ИмяРекорд (с)Соревнование
Мацей Чапевский0,49Grudziądz Open 2016
Самир Аггарвал0,51Puget Sound Spring 2019
Михал Ржевский0,52Grudziądz Open 2016
Джод Брюстер0,53Koalafication Melbourne 2019
Авраам Торрес Ортиз Агирре0,54ArCubingFest 2018

5 лучших по среднему из 5 решений[13]

ИмяРекорд (с)Соревнование
Мартин Воделе Эгдал1,21Kjeller Open 2018
Уилл Каллан1,23CubingUSA Nationals 2019
Цзячжоу Ли (李佳洲)1,25Xi'an Cherry Blossom 2019
Адвай Сант1,31Oculus Cube Open 2019
Зайн Ханани1,34ODU Big Blue Spring 2019

См. также

Примечания

  1. Pattern forming puzzle and method with pieces rotatable in groups (англ.). Дата обращения: 4 августа 2020.
  2. Moleculon Research Corporation v. CBS, Inc. Digital-law-online.info. Дата обращения: 20 июня 2012.
  3. Jaapsch.net: Pocket Cube
  4. http://sporadic.stanford.edu/bump/match/morepolished.pdf
  5. Ortega method tutorial by Bob Burton
  6. What is Varasano?
  7. What is CLL?
  8. CLL tutorial by Christopher Olson
  9. What is Twisty CLL?
  10. Description of the EG method
  11. World Cube Association Official Results - 2x2x2 Cube.
  12. World Cube Association Official 2x2x2 Ranking Single
  13. World Cube Association Official 2x2x2 Ranking Average
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.