Гипотеза Албертсона

Гипотеза Албертсона — это недоказанная связь между числом пересечением и хроматическим числом графа. Гипотеза носит имя Михаила О. Албертсона, профессора колледжа Смит, который сформулировал утверждение в качестве гипотезы в 2007[1]. Гипотеза является одной из многих гипотез в теории раскраски графов[2]. Гипотеза утверждает, что среди всех графов, требующих n цветов, полный граф Kn находится среди графов, имеющих наименьшее число пересечений. Эквивалентно, если граф может быть нарисован с меньшим числом пересечений, чем у Kn, тогда, согласно гипотезе, его можно раскрасить в меньше чем n цветов.

Гипотетическая формула минимального числа пересечений

Напрямую можно показать, что граф с ограниченным числом пересечений имеет ограниченное хроматическое число — можно назначить различные цвета концам всех пересекающихся рёбер и выкрасить в 4 цвета оставшийся после удаления этих рёбер планарный граф. Гипотеза Албертсона заменяет эту качественную связь между числом пересечений и числом цветов более точной количественной связью. Другая гипотеза Ричарда К. Гая[3] утверждает, что число пересечений полного графа Kn равно

Известно, каким образом рисовать полные графы с таким числом пересечений, располагая вершины на двух концентрических окружностях. Что неизвестно, так это существуют ли рисунки с меньшим числом пресечений. Таким образом, усиленная формулировка гипотезы Албертсона гласит, что любой n-хроматический граф имеет число пересечений, не меньший правой части этой формулы[4]. Эта усиленная гипотеза справедлива тогда и только тогда, когда обе гипотезы, гипотеза Гая и гипотеза Албертсона, верны.

Асимптотические границы

Более слабая форма гипотезы, доказанная М. Шефером[4], утверждает, что любой граф с хроматическим числом n имеет число пересечений Ω(n4), или, эквивалентно, что любой граф с числом пересечений k имеет хроматическое число O(k1/4). Алберсон, Крэтсон и Фокс[4] опубликовали доказательство этих границ путём комбинации факта, что любой минимальный n-хроматический граф имеет минимальную степень, не меньшую (в противном случае можно было бы раскрасить его в цветов после удаления вершины с малой степенью, раскраски оставшегося графа и использования доступного цвета для удалённой вершины, что противоречит минимальности графа) вместе с неравенством для числа пересечений, согласно которому любой граф с имеет число пересечений ). Используя те же доводы, они показывают, что контрпример гипотезе Албертсона с хроматическим числом n (если таковой существует) должен иметь менее 4 n вершин.

Специальные случаи

Гипотеза Албертсона является не имеющим содержания истинным утверждением для  — имеет число пересечений нуль и все графы имеют число пересечений, не меньшее нуля. Случай гипотезы Албертсона эквивалентен теореме о чётырёх красках, что любой планарный граф может быть раскрашен в четыре или меньше цветов, а единственные графы, для которых требуется меньше пересечений, чем у графа K5, это планарные графы, по гипотезе же они должны быть не более чем 4-хроматическими. Благодаря поддержке некоторых групп авторов сейчас известно, что гипотеза верна для всех [5][4][6]. Для любого целого числа Луис и Рихтер представили семейства (c+1)-критических по цвету графов, которые не содержат подразделения полного графа K(c+1), но имеющие число пересечений, не меньшее K(c+1)[7].

Связанные гипотезы

Существует также связь с гипотезой Хадвигера, важной открытой проблеме комбинаторики, касающейся связи между хроматическим числом и существованием больших клик в качестве миноров графа[6]. Вариант гипотезы Хадвигера, выдвинутый Дьёрдьем Хайошем, утверждает, что любой n-хроматический граф содержит подразделение Kn. Если бы гипотеза была верна, из неё вытекала бы гипотеза Албертсона, поскольку число пересечений полного графа не меньше числа пересечений подразделения. Однако в настоящее время известны контрпримеры гипотезе Хайоша[8][9], так что эта связь не даёт возможности доказательства гипотезы Албертсона.

Примечания

  1. Согласно Албертсону, Кранстону и Фоксу(Albertson, Cranston, Fox 2009) гипотеза была сделана Албертсоном на специальной сессии Американского математического общества в Чикаго, состоявшейся в октябре 2007.
  2. Hutchinson, 2009.
  3. Guy, 1972.
  4. Albertson, Cranston, Fox, 2009.
  5. Oporowski, Zhao, 2009.
  6. Barát, Tóth, 2010.
  7. Luiz, Richter, 2014.
  8. Catlin, 1979.
  9. Erdős, Fajtlowicz, 1981.

Литература

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.