Высокое давление
Высокое давление — давление, превышающее некоторое характерное для данного физического явления или конкретной задачи значение[1]. В науке и технике при изучении высокого давления исследуется его влияние на материалы, а также на дизайн и конструкцию устройств, таких как ячейка с алмазной наковальней, которые могут создавать высокое давление. Под высоким давлением обычно понимается давление, в тысячи (килобар) или миллионы (мегабар) раз больше атмосферного давления (около 1 бара или 100 000 Па).
История и обзор
Перси Уильямс Бриджмен получил Нобелевскую премию в 1946 году за прогресс в этой области физики: увеличение на несколько порядков величины давления (от 400 до 40 000 МПа). В список отцов-основателей этого направления входят также имена Гарри Джорджа Дрикамера, Трейси Холл, Фрэнсиса П. Банди, Леонида Ф. Верещагина и Сергея М. Стишова.
Благодаря применению высокого давления, а также высокой температуры к углероду были впервые получены искусственные алмазы, как и множество других интересных открытий. Практически любой материал при воздействии высокого давления уплотняется в более плотную форму, например, кварц, также называемый кремнезёмом или диоксидом кремния, сначала принимает более плотную форму, известную как коэсит, а затем при приложении ещё более высокого давления образует стишовит. Эти две формы кремнезёма были сначала открыты экспериментаторами высокого давления, но затем были обнаружены в природе в месте падения метеоритов.
Химическая связь, вероятно, изменится под высоким давлением, когда член PV в свободной энергии станет сравнимым с энергиями типичных химических связей, то есть при давлении около 100 ГПа. Среди наиболее ярких изменений — металлизация кислорода при 96 ГПа (превращение кислорода в сверхпроводник) и переход натрия из металла с почти свободными электронами в прозрачный изолятор при ~ 200 ГПа. Однако при максимально высоком сжатии все материалы будут металлизироваться[2].
Эксперименты с материалами под высоким давлением привели к открытию новых минералов, которые, как считается, существуют в глубокой мантии Земли, таких как силикатный перовскит, который, как считается, составляет половину основной массы Земли, и постперовскит, который находится на границе ядро-мантия и объясняет многие аномалии, наблюдаемые в этой области.
Типичные давления:
- давления, достигаемые прессами большого объёма, составляют до 30-40 ГПа,
- давления, которые могут быть созданы внутри ячеек с алмазными наковальнями, составляют ~ 1000 ГПа[3],
- давление в центре Земли составляет 364 ГПа,
- и самые высокие давления, когда-либо достигнутые в ударных волнах, превышают 100 000 ГПа[4].
Примечания
- Лившиц Л. Д., Понятовский E. Г. Давление высокое // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1988. — Т. 1: Ааронова — Бома эффект — Длинные линии. — 707 с. — 100 000 экз.
- Grochala, Wojciech; Hoffmann, Roald; Feng, Ji; Ashcroft, Neil W. (2007). “The Chemical Imagination at Work in Very Tight Places”. Angewandte Chemie International Edition. 46 (20): 3620—3642. DOI:10.1002/anie.200602485. PMID 17477335.
- Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Solopova, Natalia A.; Abakumov, Artem; Turner, Stuart; Hanfland, Michael; Bykova, Elena; Bykov, Maxim; Prescher, Clemens; Prakapenka, Vitali B.; Petitgirard, Sylvain; Chuvashova, Irina; Gasharova, Biliana; Mathis, Yves-Laurent; Ershov, Petr; Snigireva, Irina; Snigirev, Anatoly (2016). “Terapascal static pressure generation with ultrahigh yield strength nanodiamond”. Science Advances. 2 (7): e1600341. DOI:10.1126/sciadv.1600341. PMC 4956398. PMID 27453944.
- Jeanloz, R.; Celliers, P. M.; Collins, G. W.; Eggert, J. H.; Lee, K. K.; McWilliams, R. S.; Brygoo, S.; Loubeyre, P. (2007). “Achieving high-density states through shock-wave loading of precompressed samples”. Proceedings of the National Academy of Sciences. 104 (22): 9172—9177. Bibcode:2007PNAS..104.9172J. DOI:10.1073/pnas.0608170104. PMC 1890466. PMID 17494771.