Водородная заправочная станция
Водородная заправочная станция – оборудование для заправки водородом или водородной смесью HCNG транспорта на шоссе или дома. Топливо обычно отпускается в килограммах.[1]
Типы заправочных станций
Водородные заправочные станции можно разделить на три типа:
- Мобильные
- Стационарные
- Домашние
Мобильные станции предназначены для заправки техники в местах, где нет другой водородной инфраструктуры. Например, военной техники, выставочных образцов и т.д.
Стационарные станции предназначены для продажи водорода, произведённого на самой станции, или в другом месте. Некоторые из них располагаются на химических производствах, где производят водород, или получают водород в виде побочного продукта основного производства.
Домашние заправочные станции создаются как решение проблемы отсутствия водородной инфраструктуры. Они могут производить 200 – 1000 кг водорода в год, что достаточно для заправки 1-5 автомобилей в сутки. Водород может производиться электролизом воды в ночное время. Это позволит сгладить пики потребления электроэнергии.
Honda испытывает свою бытовую установку под названием Домашняя энергетическая станция Honda. Установка в бытовых условиях производит водород из природного газа. Часть водорода используется в топливных элементах для производства тепловой и электрической энергии для дома. Оставшаяся часть водорода используется для заправки автомобиля.
Аналогичные разработки ведутся:
- Toyota совместно с Aisin Seiki Co. с 2001 года. Начало продаж запланировано на 2008 г. Домашняя система Toyota получает водород из природного газа, сжиженного нефтяного газа, или керосина. Toyota прогнозирует, что цена домашней энергетической установки составит около $4100.
- General Motors разрабатывает домашнюю систему для заправки водородных автомобилей. GM надеется, что домашние заправочные станции поступят в продажу в 2011 году, когда начнутся поставки автомобилей на водородных топливных элементах.
Британская компания ITM Power Plc разработала и испытала в 2007 г. бытовой электролизёр для производства водорода. Водород производится ночью, что позволит сгладить пики потребления электроэнергии. Электролизер мощностью 10 кВт производит из воды водород, и хранит его под давлением 75 бар. Произведённого водорода достаточно для 40 км пробега битопливного (водород/бензин) Ford Focus. Компания планирует начать производство бытовых электролизеров в начале 2008 г. ITM Power достигла уровня себестоимости электролизеров $164 за 1 кВт.
Топливо
Подавляющая часть водородных заправочных станций продаёт газообразный водород.
Из общего количества заправочных станций, построенных 2004—2005 году, всего 8 % работают с жидким водородом, остальные — с газообразным.
Ставку на жидкий водород сделала BMW. Её битопливный (водород/бензин) BMW hydrogen 7 работает на жидком водороде.
Председатель совета директоров и главный управляющий General Motors Рик Вагонер (Rick Wagoner) также считает жидкий водород более перспективным. General Motors на свой прототип HydroGen3 (Opel Zafira) устанавливает два бака: один для газообразного водорода, другой для жидкого.
Время заправки
Современное оборудование позволяет заправлять транспорт водородом за 3 (складской погрузчик) - 5 (легковой автомобиль) минут, что сопоставимо с временем заправки бензинового транспорта.
Компания Linde AG разработала технологию заправки автомобиля водородом за три минуты [2].
Распространение
К концу 2006 года во всём мире функционировало более 140 стационарных водородных автомобильных заправочных станций. Из них было 46% сконцентрировано в Северной Америке (США + Канада). К концу 2008 года количество заправочных станций выросло до 175. Планировалось строительство 108 заправочных станций[3]. В РФ нет водородных заправочных станций.
Размеры стационарных заправочных станций
Заправочные станции можно условно разделить по размерам:
- Малые – до 20 кг водорода в день – до 10 легковых автомобилей в день;
- Средние – 50-1250 кг водорода в день – до 250 легковых автомобилей или до 25 автобусов в день;
- Промышленные – 2500 кг водорода в день (и более) – до 500 легковых автомобилей или до 50 автобусов в день.
Малые и средние заправочные станции могут самостоятельно производить водород как электролизом воды, так и риформингом углеводородов (природный газ, керосин и т.д.).
В США стоимость водорода, произведённого электролизом воды на заправочной станции среднего размера, состоит на 58% из стоимости электроэнергии и на 32% из капитальных затрат. У малой заправочной станции в стоимости водорода на долю капитальных затрат приходится 55%, а на долю электроэнергии 35%. Данные на 2005 год.
Потребление водорода
National Renewable Energy Laboratory (США) в своих расчётах использует среднюю дальность пробега легкового автомобиля 12000 миль в год (19200 км), потребление водорода - 1 кг на пробег 60 миль (96 км). Т.е. одному легковому автомобилю в год требуется 200 кг водорода, или 0,55 кг в день.
Строение водородной заправочной станции
- риформер, или электролизёр;
- система очистки водорода;
- система хранения водорода;
- компрессор (для газообразного водорода);
- диспенсер для раздачи водорода конечным потребителям.
Стоимость оборудования для водородной станции оценивалась на 2008 год в сумму от 0.5 до 5 млн долларов США.[4]
Стандарты
Национальные, межгосударственные стандарты, связанные с разработкой, строительством и эксплуатацией автомобильных водородных заправочных станций относятся к компетенции Технического комитета по стандартизации Росстандарта "Водородные технологии" (ТК 029). Техническое регулирование в области строительства водородных заправочных в Российской Федерации обеспечивается серией национальных и межгосударственных стандартов, идентичных международным стандартам ИСО, которая включает в себя:
- ГОСТ Р ИСО 14687-1-2012 «Топливо водородное. Технические условия на продукт. Часть 1. Все случаи применения, кроме использования в топливных элементах с протонообменной мембраной, применяемых в дорожных транспортных средствах»;
- ГОСТ Р 55466-2013/ISO/TS 14687-2:2008 Топливо водородное. Технические условия на продукт. Часть 2. Применение водорода для топливных элементов с протонообменной мембраной дорожных транспортных средств»;
- ГОСТ ISO 14687-3–2016 «Топливо водородное. Технические условия на продукт. Часть 3. Применение для топливных элементов с протонообменной мембраной стационарных установок»;
- ГОСТ Р ИСО 17268–2014 «Устройства соединительные для заправки наземных транспортных средств газообразным водородным топливом»;
- ГОСТ Р ИСО 26142–2013 «Приборы стационарные для обнаружения водорода;
- ГОСТ Р 55226–2012/ISO/TS 20100:2008 Водород газообразный. Заправочные станции».
Настоящие стандарты подготовлены Некоммерческим партнерством "Национальная ассоциация водородной энергетики (НП НАВЭ)" на основе собственного аутентичного перевода международных стандартов ИСО на русский язык. Система национальных и межгосударственных стандартов для создания сети водородных заправочных станций и станций технического обслуживания водородных автомобилей содержит необходимые разрешительные документы для их строительства и организации эксплуатации парка водородных автомобилей, автобусов и автопогрузчиков с системами топливных элементов.[5].
См. также
Примечания
- LA gas station gets hydrogen fuel pump
- to Speed up Hydrogen Refuelling in North America (недоступная ссылка)
- Fifteen New Hydrogen Refuelling Stations in 2008, Worldwide (недоступная ссылка). Дата обращения: 8 мая 2009. Архивировано 6 декабря 2011 года.
- Pump It Up: We Refuel a Hydrogen Fuel-Cell Vehicle. Fueling up a fuel cell is simple. Fueling up the infrastructure is another thing entirely. / [Car and Driver]], ноябрь 2008 (англ.): "hydrogen for fuel-cell ..is captured and packaged on site, extracted from the station’s supply of water ..or from natural gas. The equipment .. with costs ranging between $500,000 and $5,000,000 per installation. The price depends on factors such as the number and pressure of the pumps, security measures, and the types of vehicles the facility intends to serve"
- Сведения о разработчике ГОСТ Р 55226-2012