Браун, Майкл Стюарт
Майкл Стюарт Браун (англ. Michael Stuart Brown; род. 13 апреля, 1941, Бруклин, Нью-Йорк, США) — известный американский врач и биохимик. За исследования наследственной гиперхолестеринемии и открытие рецептора липопротеинов низкой плотности вместе с Джозефом Голдштейном получил Нобелевскую премию по медицине и физиологии в 1985 году.
Майкл Стюарт Браун | |
---|---|
англ. Michael Stuart Brown | |
| |
Дата рождения | 13 апреля 1941 (80 лет) |
Место рождения | |
Страна | США |
Научная сфера | генетика, биохимия |
Место работы | |
Альма-матер | |
Известен как | исследователь регуляции метаболизма холестерина |
Награды и премии |
Нобелевская премия по физиологии и медицине (1985) Национальная научная медаль США (1988) |
Сайт | Сайт |
Медиафайлы на Викискладе |
Член Национальной академии наук США (1980)[2], иностранный член Лондонского королевского общества (1991)[3].
Биография
Майкл Браун окончил Университет Пенсильвании в 1962 году и медицинскую школу этого же университета в 1966 году. С тех пор работает в Юго-Западном медицинском центре (Университет Техаса) в области метаболизма холестерина. Автор множества статей в ведущих мировых биологических и медицинских журналах. В 1985 году получил Нобелевскую премию за открытие рецептора липопротеинов низкой плотности.
Награды
- Heinrich Wieland Prize (1976)
- Pfizer Award in Enzyme Chemistry (1976)
- Passano Award (1978)
- Richard Lounsbery Award (1979)
- Международная премия Гайрднера (1981)
- Премия Луизы Гросс Хорвиц (1984)
- Премия Альберта Ласкера за фундаментальные медицинские исследования (1985)
- Премия Уильяма Аллана (1985)
- Нобелевская премия по физиологии и медицине (1985)
- Keith R. Porter Lecture (1987)
- Национальная научная медаль США (1988)
- Премия Фонда Уоррена Альперта (1999)
- George M. Kober Medal (2002)
- Премия медицинского центра Олбани (2003)
- Woodrow Wilson Award for Public Service (2005)
- Аничковская премия (2010)
Библиография
Expression of the familial hypercholesterolemia gene in heterozygotes: mechanism for a dominant disorder in man. Science. 1974 Jul 5;185(4145):61-3.
Regulation of the activity of the low density lipoprotein receptor in human fibroblasts. Cell. 1975 Nov;6(3):307-16.
Release of low density lipoprotein from its cell surface receptor by sulfated glycosaminoglycans. Cell. 1976 Jan;7(1):85-95.
Receptor-mediated control of cholesterol metabolism. Science. 1976 Jan 16;191(4223):150-4.
Heterozygous familial hypercholesterolemia: failure of normal allele to compensate for mutant allele at a regulated genetic locus. Cell. 1976 Oct;9(2):195-203.
Analysis of a mutant strain of human fibroblasts with a defect in the internalization of receptor-bound low density lipoprotein. Cell. 1976 Dec;9(4 PT 2):663-74.
Role of the coated endocytic vesicle in the uptake of receptor-bound low density lipoprotein in human fibroblasts. Cell. 1977 Mar;10(3):351-64.
Genetics of the LDL receptor: evidence that the mutations affecting binding and internalization are allelic. Cell. 1977 Nov;12(3):629-41.
A mutation that impairs the ability of lipoprotein receptors to localise in coated pits on the cell surface of human fibroblasts. Nature. 1977 Dec 22-29;270(5639):695-9.
Immunocytochemical visualization of coated pits and vesicles in human fibroblasts: relation to low density lipoprotein receptor distribution. Cell. 1978 Nov;15(3):919-33.
Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature. 1979 Jun 21;279(5715):679-85
LDL receptors in coated vesicles isolated from bovine adrenal cortex: binding sites unmasked by detergent treatment. Cell. 1980 Jul;20(3):829-37.
Regulation of plasma cholesterol by lipoprotein receptors. Science. 1981 May 8;212(4495):628-35.
Monensin interrupts the recycling of low density lipoprotein receptors in human fibroblasts. Cell. 1981 May;24(2):493-502.
Posttranslational processing of the LDL receptor and its genetic disruption in familial hypercholesterolemia. Cell. 1982 Oct;30(3):715-24
Independent pathways for secretion of cholesterol and apolipoprotein E by macrophages. Science. 1983 Feb 18;219(4586):871-3.
Recycling receptors: the round-trip itinerary of migrant membrane proteins. Cell. 1983 Mar;32(3):663-7
The LDL receptor locus in familial hypercholesterolemia: multiple mutations disrupt transport and processing of a membrane receptor. Cell. 1983 Mar;32(3):941-51.
Depletion of intracellular potassium arrests coated pit formation and receptor-mediated endocytosis in fibroblasts. Cell. 1983 May;33(1):273-85
Increase in membrane cholesterol: a possible trigger for degradation of HMG CoA reductase and crystalloid endoplasmic reticulum in UT-1 cells. Cell. 1984 Apr;36(4):835-45.
Nucleotide sequence of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase, a glycoprotein of endoplasmic reticulum. Nature. 1984 Apr 12-18;308(5960):613-7.
Domain map of the LDL receptor: sequence homology with the epidermal growth factor precursor. Cell. 1984 Jun;37(2):577-85.
HMG CoA reductase: a negatively regulated gene with unusual promoter and 5' untranslated regions. Cell. 1984 Aug;38(1):275-85.
The human LDL receptor: a cysteine-rich protein with multiple Alu sequences in its mRNA. Cell. 1984 Nov;39(1):27-38
Mutation in LDL receptor: Alu-Alu recombination deletes exons encoding transmembrane and cytoplasmic domains. Science. 1985 Jan 11;227(4683):140-6.
The LDL receptor gene: a mosaic of exons shared with different proteins. Science. 1985 May 17;228(4701):815-22.
Cassette of eight exons shared by genes for LDL receptor and EGF precursor. Science. 1985 May 17;228(4701):893-895
Membrane-bound domain of HMG CoA reductase is required for sterol-enhanced degradation of the enzyme. Cell. 1985 May;41(1):249-58.
Internalization-defective LDL receptors produced by genes with nonsense and frameshift mutations that truncate the cytoplasmic domain. Cell. 1985 Jul;41(3):735-43.
5' end of HMG CoA reductase gene contains sequences responsible for cholesterol-mediated inhibition of transcription. Cell. 1985 Aug;42(1):203-12.
Scavenger cell receptor shared. Nature. 1985 Aug 22-28;316(6030):680-1.
A receptor-mediated pathway for cholesterol homeostasis. Science. 1986 Apr 4;232(4746):34-47.
The J.D. mutation in familial hypercholesterolemia: amino acid substitution in cytoplasmic domain impedes internalization of LDL receptors Cell. 1986 Apr 11;45(1):15-24.
Deletion in cysteine-rich region of LDL receptor impedes transport to cell surface in WHHL rabbit. Science. 1986 Jun 6;232(4755):1230-7.
Duplication of seven exons in LDL receptor gene caused by Alu-Alu recombination in a subject with familial hypercholesterolemia. Cell. 1987 Mar 13;48(5):827-35.
42 bp element from LDL receptor gene confers end-product repression by sterols when inserted into viral TK promoter. Cell. 1987 Mar 27;48(6):1061-9.
Acid-dependent ligand dissociation and recycling of LDL receptor mediated by growth factor homology region. Nature. 1987 Apr 23-29;326(6115):760-765
Overexpression of low density lipoprotein (LDL) receptor eliminates LDL from plasma in transgenic mice. Science. 1988 Mar 11;239(4845):1277-81.
Inhibition of purified p21ras farnesyl: protein transferase by Cys-AAX tetrapeptides. Cell. 1990 Jul 13;62(1):81-8.
Diet-induced hypercholesterolemia in mice: prevention by overexpression of LDL receptors. Science. 1990 Nov 30;250(4985):1273-5
Protein farnesyltransferase and geranylgeranyltransferase share a common alpha subunit. Cell. 1991 May 3;65(3):429-34.
cDNA cloning and expression of the peptide-binding beta subunit of rat p21ras farnesyltransferase, the counterpart of yeast DPR1/RAM1. Cell. 1991 Jul 26;66(2):327-34.
Purification of component A of Rab geranylgeranyl transferase: possible identity with the choroideremia gene product. Cell. 1992 Sep 18;70(6):1049-57.
Koch’s postulates for cholesterol. Cell. 1992 Oct 16;71(2):187-8.
cDNA cloning of component A of Rab geranylgeranyl transferase and demonstration of its role as a Rab escort protein. Cell. 1993 Jun 18;73(6):1091-9
SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell. 1993 Oct 8;75(1):187-97.
Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: implications for the Cori cycle. Cell. 1994 Mar 11;76(5):865-73.
SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis. Cell. 1994 Apr 8;77(1):53-62
Sterol-regulated release of SREBP-2 from cell membranes requires two sequential cleavages, one within a transmembrane segment. Cell. 1996 Jun 28;85(7):1037-46
Sterol resistance in CHO cells traced to point mutation in SREBP cleavage-activating protein. Cell. 1996 Nov 1;87(3):415-26.
The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 1997 May 2;89(3):331-40.
Transport-dependent proteolysis of SREBP: relocation of site-1 protease from Golgi to ER obviates the need for SREBP transport to Golgi. Cell. 1999 Dec 23;99(7):703-12.
Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell. 2000 Feb 18;100(4):391-8.
Regulated step in cholesterol feedback localized to budding of SCAP from ER membranes. Cell. 2000 Aug 4;102(3):315-23.
Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell. 2002 Aug 23;110(4):489-500.