Атлас (топология)
Атлас — понятие дифференциальной геометрии, позволяющее вводить на многообразии дополнительные структуры; например, гладкую структуру или комплексную структуру.
Атлас состоит из отдельных карт, которые описывают отдельные области многообразия. Если под многообразием понимать поверхность Земли, то слова «карта» и «атлас» приобретают свои обычные значения.
Определения
Пусть — числовое поле (например или ), — топологическое пространство.
- Карта — это пара , где
- — открытое множество в
- — гомеоморфизм из в открытое множество в
- Локальная карта вводит в криволинейные координаты, сопоставляя точке набор чисел
- Если области определения двух карт и пересекаются (), то между множествами и имеются взаимно обратные отображения (гомеоморфизмы), называемые функциями сличения или отображением склейки :
- Атлас — это множество согласованных карт , , такое, что образует покрытие пространства . Здесь — некоторое множество индексов. При этом атлас называется гладким (класса ) или аналитическим, если функции замены координат для всех карт гладкие (класса ) или аналитические.
Связанные определения
- Два гладких (аналитических) атласа называются согласованными, если их объединение также является гладким (аналитическим) атласом.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.