Асимптотическая формула Вейля

Асимптотическая формула Вейля связывает объём риманова многообразия с асимптотическим поведением собственных значений его лапласиана.

История

Соотношение было получено Германом Вейлем в 1911 году. Изначально оно формулировалось только для областей евклидова пространства. В 1912 году он представил новое доказательство на основе вариационных методов.[1]

Формулировка

Пусть  — -мерное риманово многообразие. Обозначим через число собственных значений (с учётом кратности), не превосходящих , для задачи Дирихле на . Тогда

,

где обозначает объем единичного шара в -мерном евклидовом пространстве.[2]

Уточнения

Оценка на остаточный член была многократно улучшена.

  • В 1922 г. Рихард Курант улучшил её до .
  • В 1952 году Борис Левитан доказал более жесткое ограничение для замкнутых многообразий.
  • Роберт Сили обобщил эту оценку, в частности, включил определенные евклидовы области, в 1978 году.[3]

Предположительно, следующий член в асимптотике при пропорционален площади границы . С учётом этого члена, оценка на остаточный член должна быть . В частности, при условии отсутствия границы оценка на остаточный член в формуле выше должна быть .

  • В 1975 году Ганс Дейстермаат и Виктор Гийемин доказали оценку при некоторых дополнительных условиях общего положения.[4]
    • Последнее было обобщенно Виктором Иврием в 1980 году.[5] Это обобщение предполагает, что множество периодических траекторий бильярда в имеет меру 0. Последнее, возможно, выполняется для всех ограниченных Евклидовых областей с гладкими границами.

Примечания

  1. H. Weyl. Das asymptotische Verteilungsgesetz linearen partiellen Differentialgleichungen (нем.) // Math. Ann. : magazin. — 1912. Bd. 71. S. 441—479.
  2. Weyl, Hermann. Über die asymptotische Verteilung der Eigenwerte (неопр.) // Nachrichten der Königlichen Gesellschaft der Wissenschaften zu Göttingen. — 1911. С. 110—117.
  3. R. Seeley. A sharp asymptotic estimate for the eigenvalues of the Laplacian in a domain of // Adv. Math.. — 1978. — Vol. 29, no. 2. — P. 244—269. doi:10.1016/0001-8708(78)90013-0.
  4. J. J. Duistermaat, V. W. Guillemin. The spectrum of positive elliptic operators and periodic bicharacteristics // Inventiones mathematicae. — 1975. — Vol. 29, no. 1. — P. 39—79. doi:10.1007/BF01405172.
  5. В. Я. Иврий. О втором члене спектральной асимптотики для оператора Лапласа — Бельтрами на многообразиях с краем // Функц. анализ и его прил.. — 1980. Т. 14, № 2. С. 25—34.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.