Антарктический ледяной щит

Антарктический ледяной щит — один из двух полярных ледяных щитов Земли. Охватывает около 98 % площади Антарктиды и является самым крупным скоплением льда на Земле. Его площадь составляет 14 млн км², а объём — 26,5 млн км³ льда. В Антарктическом ледяном щите содержится около 61 % всей пресной воды на Земле, что эквивалентно 58 м уровня Мирового океана[1]. В Восточной Антарктиде фундамент ледяного щита составляют континентальные породы, тогда как в Западной Антарктиде фундамент погружается больше чем на 2500 м глубже уровня моря.

Антарктический ледяной щит
Характеристики
Площадь14 000 000 км²
Расположение
90° ю. ш. 0° в. д.
Континент
Антарктический ледяной щит

Строение

Топография коренных пород Антарктиды

Ледяной щит имеет сложное строение. Он образован в результате слияния громадного наземного щита Восточной Антарктиды, «морского» ледяного щита Западной Антарктиды, плавучих шельфовых ледников Росса, Ронне, Фильхнера и других, а также нескольких горно-покровных комплексов Антарктического полуострова.

Восточно-антарктический ледяной щит — это огромный ледяной «корж» площадью 10 млн км² и диаметром более 4 тысяч км. Поверхность льда, скрытая под 100—150-метровой толщей снега и фирна, образует огромное плато со средней высотой около 3 км и максимальной высотой в его центре до 4 км. Средняя толщина льда Восточной Антарктиды равняется 2,5 км, а максимальная — почти 4,8 км. Существенно меньшие размеры имеет Западно-антарктический ледяной щит: площадь менее 2 млн км², средняя толщина — лишь 1,1 км, поверхность не поднимается выше 2 км над уровнем моря. Фундамент этого щита на больших площадях погружён ниже уровня океана, его средняя глубина около 400 м.

Весьма интересны шельфовые ледники Антарктиды, которые являются плавучим продолжением наземного и «морского» покровов. Их общая площадь — 1,5 млн км², причём наибольшие из них — шельфовые ледники Росса и Ронне-Фильхнера, которые занимают внутренние части морей Росса и Уэдделла, имеют площадь по 0,6 млн км² каждый. Плавучий лёд этих ледников отделён от основного щита линиями налегания, а его внешние границы образованы фронтальными обрывами, или барьерами, которые постоянно обновляются благодаря откалыванию айсбергов. Толщина льда у тыловых границ может доходить до 1—1,3 км, у барьеров она редко превышает 150—200 м.

Движение льда

Спутниковое изображение Антарктиды

Антарктический лёд распространяется из нескольких центров к периферии покрова. В разных его частях это движение идёт с разной скоростью. В центре Антарктиды, лёд двигается медленно, у ледникового края его скорости возрастают до нескольких десятков и сотен метров в год. Здесь быстрее всего двигаются ледяные потоки, которые погружаются в открытый океан. Их скорости нередко достигают километра в год, а один из ледяных потоков Западной Антарктиды — ледник Пайн-Айленд — двигается со скоростью несколько километров в год. Однако большинство ледяных потоков впадают не в океан, а в шельфовые ледники. Ледяные потоки такой категории двигаются медленнее, их скорость не превышает 300—800 м/год. Такой медленный темп обычно объясняют сопротивлением со стороны шельфовых ледников, которые сами, как правило, тормозятся берегами и отмелями.

Серия исследований, проведенная с помощью данных, полученных с европейского спутника Cryosat, позволила выяснить, что одновременно с уменьшением общей площади льдов в Антарктиде увеличилась их толщина. В настоящее время прирост составляет до 5 см в год, что значительно больше, чем в 1990-е годы[2].

Геологическая история

Обледенение Антарктиды началось во время среднего эоцена около 45,5 миллионов лет назад[3] и распространилось во время эоцен-олигоценового вымирания около 34 миллионов лет назад. Причинами похолодания и оледенения ученые называют уменьшение количества углекислого газа в атмосфере Земли[4] и появление пролива Дрейка[5].

См. также

Примечания

  1. P. Fretwell, H. D. Pritchard. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. The Cryosphere (31 июля 2012). Дата обращения: 1 декабря 2015.
  2. Толщина льда в Антарктиде растет. news-mining.ru. Дата обращения: 28 июля 2020.
  3. Sedimentological evidence for the formation of an East Antarctic ice sheet in Eocene/Oligocene time (недоступная ссылка). Дата обращения: 11 февраля 2012. Архивировано 16 июня 2012 года. Palaeogeography, palaeoclimatology, & palaeoecology ISSN 0031-0182, 1992, vol. 93, no. 1-2, pp. 85-112 (3 p.)
  4. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. www.nature.com. Дата обращения: 28 июля 2020. Nature 421, 245—249 (16 January 2003) | doi:10.1038; Received 25 July 2002; Accepted 12 November 2002
  5. Eocene-Oligocene transition in the Southern Ocean: History of water mass circulation and biological productivity (недоступная ссылка). Дата обращения: 11 февраля 2012. Архивировано 11 февраля 2016 года. Geology February 1996 v. 24 no. 2 p. 163—166 doi: 10.1130/0091-7613(1996)024
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.