Алгебраическая теория чисел
Алгебраическая теория чисел — раздел теории чисел, основная задача которого — изучение свойств целых элементов числовых полей.
В алгебраической теории чисел понятие числа расширяется, в качестве алгебраических чисел рассматривают корни многочленов с рациональными коэффициентами. При этом аналогом целых чисел выступают целые алгебраические числа, то есть корни унитарных многочленов с целыми коэффициентами. В отличие от целых чисел в кольце целых алгебраических чисел не обязательно выполняется свойство факториальности, то есть единственности разложения на простые множители.
Теория алгебраических чисел обязана своим появлением изучению диофантовых уравнений и в том числе попыткам доказать теорему Ферма. Куммеру принадлежит равенство
- , где — корни степени из единицы.
Таким образом Куммер определил новые целые числа вида . Позднее Лиувилль показал, что если алгебраическое число является корнем уравнения степени , то к нему нельзя подойти ближе чем на , приближаясь дробями вида , где и — целые взаимно простые числа[1].
После определения алгебраических и трансцендентных чисел в алгебраической теории чисел выделилось направление, которое занимается доказательством трансцендентности конкретных чисел, и направление, которое занимается алгебраическими числами и изучает степень их приближения рациональными и алгебраическими[1].
Алгебраическая теория чисел включает в себя такие разделы, как теорию дивизоров, теорию Галуа, теорию полей классов, дзета- и L-функции Дирихле, когомологии групп и многое другое.
Одним из основных приёмов является вложение поля алгебраических чисел в своё пополнение по какой-то из метрик — архимедовой (например, в поле вещественных или комплексных чисел) или неархимедовой (например, в поле p-адических чисел).
Примечания
- Чисел теория // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
Литература
- И. М. Виноградов. Алгебраическая теория чисел // Математическая энциклопедия. — М.: Советская энциклопедия . — 1977—1985. // Математическая энциклопедия. — М.: Советская энциклопедия. И. М. Виноградов. 1977—1985.