Частные производные высших порядков
Пусть задана функция . Тогда каждая из её частных производных (если они, конечно, существуют) и , которые называются также частными производными первого порядка, снова являются функцией независимых переменных и может, следовательно, также иметь частные производные. Частная производная обозначается через или , а через или . Таким образом,
,
и, аналогично,
, .
Производные и называются частными производными второго порядка. Определение: частной производной второго порядка от функции дифференцируемой в области , называется первая производная от соответствующей частной производной. Рассматривая частные производные от них, получим всевозможные частные производные 3 порядка: , , и т. д.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.