Точка Парри

Точка Парри — точка, связанная с треугольником, лежащим на плоскости. Точка является замечательной точкой треугольника и перечислена под именем X(111) в Энциклопедии центров треугольника. Точка Парри названа в честь английского геометра Сирила Парри (Cyril Parry), изучавшего её в начале 1990-х[1].

Окружность Парри

Окружность и точка Парри. (G — центроид, а J и K являются точками Аполлония треугольника ABC)

Пусть ABC — треугольник на плоскости. Окружность, проходящая через центроид и две точки Аполлония треугольника ABC, называется окружностью Парри треугольника ABC. Уравнением окружности Парри в трилинейных координатах является[2]

Центр окружности Парри также является замечательной точкой треугольника и перечислен под именем X(351) в Энциклопедии центров треугольника. Трилинейные координаты центра окружности Парри равны

f(a, b, c) : f (b , c, a) : f (c, a, b), где f (a , b, c) = a (b2c2) (b2 + c2 − 2a2).

Точка Парри

Окружность Парри и описанная окружность треугольника ABC пересекаются в двух точках. Одна из них — фокус параболы Киперта треугольника ABC[3]. Другая точка пересечения называется точкой Парри треугольника ABC.

Трилинейные координаты точки Парри равны

(a / (2 a2b2c2) : b / (2 b2c2a2) : c / (2 c2a2b2))

Точка пересечения окружности Парри и описанной окружности треугольника ABC, которая является фокусом гиперболы Киперта треугольника ABC, перечислена под именем X(110) в Энциклопедии центров треугольника. Трилинейные координаты этой точки

(a / (b2c2) : b / (b2a2) : c / (a2b2))

См. также

Примечания

  1. Kimberling, 2012.
  2. Yiu, 2010, с. 175—209.
  3. Weisstein, Eric W. Parry Point (англ.) на сайте Wolfram MathWorld.

Литература

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.