Тоннелепроходческий комплекс

Тоннелепроходческий комплекс (также тоннелепроходческая машина, тоннелепроходческий механизированный комплекс, ТПМК) — общее название различных агрегатов, предназначенных для прокладывания тоннелей, с круглым поперечным сечением. Существуют машины для различных типов поверхности — от твёрдого камня до песка.

Макет тоннелепроходческой машины, использовавшейся при строительстве Готардского базисного тоннеля.

Тоннелепроходческий комплекс выполняет механизированное разрушение забоя, отгрузку разрушенной породы, возведение крепи. К числу тоннелепроходческих комплексов относятся механизированные проходческие щиты, проходческие комбайны , тоннельные комплексы. Существуют тоннелепроходческие комплексы для сооружения тоннелей с монолитной прессбетонной обработкой стен, машины (щиты) для строительства тоннелей из труб, микрощиты, а также щитовые комплексы для открытых работ. Применение подобных машин обладает преимуществом перед буровзрывным способом тем, что не слишком затрагивает окружающий грунт и позволяет скорее добиться ровных стенок будущего тоннеля. Недостатком, в свою очередь, является их высокая стоимость и трудности с транспортировкой к месту работ[1].

Первый работающий тоннелепроходческий щит был применён в 1825 году: его разработал Марк Брюнель для строительства тоннеля под Темзой. В США первая подобная машина была построена в 1853 году, хотя первое успешное использование подобной машины относится к 1952 году[2]. Самой большой по диаметру тоннелепроходческой машиной (19,25 метра) должен был стать проходческий щит, заказанный для строительства тоннеля под Невой в Санкт-Петербурге[3], однако в 2012 году от проекта отказались.

В плывунных неустойчивых грунтах при значительном давлении грунтовых вод используются проходческие комплексы с растворонагнетанием («Гидропригруз», «Slurry Shield»). В таких комплексах в призабойную часть под давлением до десятков атмосфер нагнетается бентонитовый раствор, позволяющий поддерживать забой неподвижным даже в самых тяжёлых плывунных почвах. Измельчённая порода отводится вместе с бентонитом по трубопроводу, затем в специальном сепарационном устройстве она отделяется от бентонита, который возвращается в процесс[4].

Фотогалерея

См. также

Примечания

  1. Kolymbas, Dimitrios. Tunelling and tunnel mechanics: a rational approach to tunnelling (неопр.). Springer-Verlag, 2005. — С. 444. — ISBN 3-540-25196-0.
  2. Green, Amanda Just Keep Digging: A Brief History of Tunnels. Popular Mechanics. Дата обращения: 21 января 2014.
  3. TBM o rekordowej średnicy dla rosyjskiego tunelu Orłowskiego (18 августа 2011). Дата обращения: 4 ноября 2012.
  4. Мала гірнича енциклопедія. В 3-х т. / За ред. В. С. Білецького. — Донецьк: Донбас, 2004. — ISBN 966-7804-14-3.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.