Тест Чоу
Тест Чоу (Чжоу, англ. Chow test) — применяемая в эконометрике процедура проверки стабильности параметров регрессионной модели, наличия структурных сдвигов в выборке. Фактически тест проверяет неоднородность выборки в контексте регрессионной модели.
Истинные значения параметров модели могут теоретически различаться для разных выборок, так как выборки могут быть неоднородны. В частности, при анализе временных рядов может иметь место так называемый структурный сдвиг, когда со временем изменились фундаментальные характеристики изучаемой системы. Это означает, что модель до этого сдвига и модель после сдвига вообще говоря разные. Например, экономика в 1998—1999 году и в 2008—2009 годах претерпевала структурные изменения в связи с кризисными явлениями, поэтому параметры макроэкономических моделей могут быть разными, до и после этих моментов.
Тест Чоу на структурное изменение
Пусть дана выборка объёмом , которая разбита на две подвыборки , с объёмами соответственно: . Для временных рядов это означает обычно, что определён момент времени, подозреваемый на «структурный сдвиг», соответственно временные ряды разбиваются на ряды до этого момента и после.
Пусть рассматривается регрессионная модель , где — параметры модели (их количество — ). Предполагается, что подвыборки могут быть неоднородными. Таким образом, для двух подвыборок имеются две модели:
Эти две модели можно представить одной моделью, если использовать индикатор подвыборки :
Используя эту переменную формулируется следующая модель:
- —
«длинная модель» без ограничений для всей выборки с количеством параметров . Если в этой модели наложить ограничение , то получается исходная модель с параметрами также для всей выборки. Это — «короткая модель» — модель с линейными ограничениями на параметры длинной модели.
Тогда процедуру теста можно свести к проверке этого линейного ограничения. При нормально распределённых случайных ошибках применяется стандартный F-тест для проверки линейных ограничений. Статистика этого теста строится по известному принципу:
Соответственно, если значение этой статистики больше критического при данном уровне значимости, то гипотеза об ограничениях отвергается в пользу длинной модели, то есть выборки признаются неоднородными и необходимо строить две разные модели для выборок. В противном случае выборка однородна (параметры модели стабильны) и можно строить общую модель для выборки.
Кроме F-теста можно применять и другие тесты для проверки гипотезы об ограничениях, в частности LR-тест. Особенно это касается более общего случая, когда выделяются не две подвыборки, а несколько. Если количество подвыборок равно , то соответствующая LR-статистика будет иметь распределение .
Замечание
В тесте предполагается, что разными в выборках могут быть только параметры линейной модели, но не параметры распределения случайной ошибки. В частности, предполагается одинаковая дисперсия случайной ошибки в обоих подвыборках. В общем случае, однако, это может быть не так. В этом случае применяют тест Вальда со статистикой:
- ,
где — оценки параметров и оценки их ковариационной матрицы в первой и второй подвыборках соответственно.
Тест Чоу на предсказание
Здесь применяется несколько иной подход. Строится модель для одной из подвыборок и на основе построенной модели прогнозируется зависимая переменная для второй подвыборки. Чем больше различия между предсказанными и фактическими значениями объясняемой переменной во второй выборке, тем больше разница между подвыборками. Соответстувующая F-статистика равна:
- .
В данном случае также можно использовать LR-статистику с асимптотическим распределением .
См. также
Литература
- Chow, Gregory C. Tests of Equality Between Sets of Coefficients in Two Linear Regressions (англ.). — 1960. — Vol. 28. — P. 591—605. — doi:10.2307/1910133.
- Doran, Howard E. Applied Regression Analysis in Econometrics (англ.). — CRC Press, 1989. — P. 146. — ISBN 0-8247-8049-3.
- Dougherty, Christopher. Introduction to Econometrics (англ.). — Oxford University Press, 2007. — P. 194. — ISBN 0-19-928096-7.
- Kmenta, Jan Elements of Econometrics (неопр.). — Second. — New York: Macmillan, 1986. — С. 412—423. — ISBN 0-472-10886-7.
- Wooldridge, Jeffrey M. Introduction to Econometrics: A Modern Approach (англ.). — Fourth. — Mason: South-Western, 2009. — P. 243—246. — ISBN 978-0-324-66054-8.