Тест Бройша — Годфри
Тест Бройша — Годфри, называемый также LM-тест Бройша — Годфри на автокорреляцию (англ. Breusch-Godfrey serial correlation LM-test) — применяемая в эконометрике процедура проверки автокорреляции произвольного порядка в случайных ошибках регрессионных моделей. Тест является асимптотическим, то есть для достоверности выводов требуется большой объём выборки.
Особенность данного теста заключается в том, что его можно использовать практически всегда, в отличие от, например, критерия Дарбина — Уотсона или h-теста Дарбина. Кроме того, указанные тесты проверяют только автокорреляцию первого порядка, тогда как тест Бройша — Годфри позволяет проверить автокорреляцию любого порядка.
Сущность и процедура теста
Для проверки автокорреляции порядка тест использует вспомогательную регрессию МНК-остатков исходной модели на факторы этой модели и лаговые значения остатков:
Далее для этой вспомогательной регрессии проверяется гипотеза об одновременном равенстве нулю всех коэффициентов при лаговых остатках. Проверка осуществляется с помощью соответствующей LM-статистики, равной , где — коэффициент детерминации вспомогательной модели, а — объём выборки (этот объём выборки на меньше объёма выборки для исходной модели, так как из-за лаговых значений остатков во вспомогательной регрессии первые наблюдений не учитываются). Статистика теста имеет асимптотическое распределение . Если значение статистики превышает критическое значение, то автокорреляция признаётся значимой, в противном случае она незначима.