Термолюминесцентное датирование

Те́рмолюминесце́нтное датирование — физический метод датирования объектов минерального происхождения путём измерения энергии, излученной в результате нагрева образца (термолюминесценции).

Общее описание метода

Термолюминесцентный метод датирования (ТМД) основан на способности некоторых материалов (стекло, глина, керамика, полевой шпат, алмазы, кальциты и др.) с течением времени накапливать энергию ионизирующего излучения, а затем, при нагреве, отдавать её в виде светового излучения (вспышек света). Чем старше образец, тем больше вспышек будет зафиксировано. Если образец в какой-то момент подвергался сильному нагреву или длительному солнечному облучению (отбеливанию), первоначальный накопленный сигнал стирается, и отсчёт времени следует вести именно с этого эпизода.

Для калибровки метода оценивается радиационный фон в данной местности и локальная интенсивность космических лучей.

В идеальных условиях метод позволяет датировать образцы возрастом от нескольких сотен до примерно 1 млн лет с погрешностью около 10 %, которая в некоторых случаях может быть значительно уменьшена[1].

Физика

Под воздействием внешнего радиационного фона (в том числе образующегося в ходе распада радиоактивных элементов горных пород, космического излучения) происходит образование свободных электронов и дырок и захват электронов на электронных ловушках. Наличие электронных ловушек связано с дефектами кристаллической решетки, всегда имеющимися в реальных кристаллах; чем больше дефектов в кристалле, тем больше электронов может быть захвачено на ловушках. При нагревании до температуры около 500 °C захваченные электроны высвобождаются из ловушек, и происходит рекомбинация электронов и дырок в центре высвечивания с испусканием фотонов видимого излучения.[2] Это явление и называют термолюминесценцией.

История

Впервые это явление наблюдал Роберт Бойль в 1664 году, то есть ещё в XVII веке. В современной науке первое упоминание о его использовании встречается в работе Ферингтона Дэниелса[3] в 1953 году. Первые практические применения датированы 1960-ми годам.[4][5] В последующие годы публикации по данной теме встречаются довольно часто.[6][7]

Применение

С точки зрения применения, ТМД является более простым, чем например радиоуглеродный, а следовательно, и более дешёвым. Его применяют в геологии — в частности, для определения возраста известняков,[5] вулканических пород, импактитов, фульгуритов, лёсса, дюнного и акватического песка, алевритов[1]. В археологии применяется для датировки античной керамики[8] и других изделий из обожжённой глины, таких как терракоты,[9] обжиговые печи, кирпич, а также обожжённых кремнёвых орудий и камней очагов, искусственного стекла и шлаков[1].

Свойства кристаллов накапливать ионизирующее излучение также используются в термолюминесцентных дозиметрах для регистрации ионизирующих излучений.

Ограничения

С точки зрения физического обоснования, сам метод считается достаточно точным и надёжным. Однако необходимо принимать во внимание следующие факторы:

  1. На количество накопленной световой энергии минерала влияет количество дефектов в кристаллической решётке и, соответственно, количество электронных ловушек. У разных веществ их число разное. Поэтому образцы, изготовленные в одно время и найденные в одном месте, из-за разного числа электронных ловушек могут дать разный уровень излучательной способности, вследствие чего результаты датировки могут варьироваться.
  2. Поскольку метод предполагает обязательную калибровку, в основе которой заложен принцип неизменности радиационного фона, на точность датирования влияет уровень радиации той местности, в которой проводятся исследования. Если исследуемый объект перемещался на значительные расстояния (то есть менялся уровень радиационного фона окружающей его местности) или контактировал с другими объектами с повышенным уровнем радиации (например, с грунтовыми водами), или сама местность подвергалась воздействию радиации (например, из-за аварии на АЭС), всё это снижает достоверность полученных результатов.
  3. Метод термолюминесцентного датирования на самом деле определяет не дату изготовления образца, а дату его последнего нагрева до высокой температуры. А это могли быть как обжиг, так и пожар, или просто долгое нахождение образца на открытом солнцу месте.
  4. Во время анализа, из-за воздействия высокой температуры, исследуемый образец минерала разрушается (в отличие от например оптико-люминесцентного анализа, в котором измеряют уровень излучательной способности после резкого освещения вещества).

См. также

Ссылки

Литература

  1. Вагнер Г. А. Научные методы датирования в геологии, археологии и истории. —М.: Техносфера, 2006.

Примечания

  1. Вагнер Г. А. Научные методы датирования в геологии, археологии и истории. М.: Техносфера, 2006.
  2. «Успехи физических наук» Том 107, вып 1., Май 1972 г., М. Тайт, (стр. 132—135)
  3. F. Daniels et al.. Science 117, 343 (1953)
  4. Elizabeth K. Ralph & Mark C. Han: «Dating of Pottery by Thermoluminescence», Nature 210, 245—247 (16 April 1966)
  5. Thermoluminescence of Geological Materials, ed. by D. J. McDoughall, N.Y., Academic Press, 1968
  6. Aitken, M.J., Thermoluminescence Dating, Academic Press, London (1985)
  7. A specialist seminar on thermoluminescence dating. [Oxford, July 1978].; HACKENS, T. ET AL. (EDS.).
  8. M.J. Aitkeη et al., Nature 219, 442 (1968)
  9. Определение возраста терракот цивилизации Нок
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.