Теорема Хеллингера — Тёплица
Теорема Хеллингера — Тёплица — результат функционального анализа, устанавливающий ограниченность симметрического оператора в гильбертовом пространстве.
Формулировка
Пусть — гильбертово пространство. Если для линейного оператора существует линейный оператор , удовлетворяющий условию , то оператор является ограниченным.
В частности, ограниченным является любой симметрический оператор, заданный на всем пространстве, то есть линейный оператор, удовлетворяющий условию .
Замечания
Существенным условием теоремы является условие определённости оператора на всём гильбертовом пространстве.
Следствия
- Всякий симметрический оператор, определённый на всём гильбертовом пространстве, является самосопряжённым.
- Самосопряжённый неограниченный оператор не может быть определён на всём гильбертовом пространстве.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.