Теорема Титчмарша — Пойа

Теорема Титчмарша — Пойа — утверждение теории вероятностей, определяющее достаточные условия для того, чтобы некоторая функция была характеристической функцией случайной величины. Её многомерное обобщение для характеристической функции случайного вектора неизвестно[1].

Формулировка

Всякая чётная функция , непрерывная в нуле, ограниченная, неотрицательная и выпуклая вниз при , является характеристической функцией (закона распределения, называемого «выпуклым»).[2][3]

Доказательство

Доказательство теоремы приведено в книгах[4][3].

Примечания

  1. М. И. Ядренко, Н. Н. Леоненко О некоторых нерешённых задачах анализа, комбинаторики и теории вероятностей // Математика сегодня. - Киев, Вища школа, 1983. - с. 103
  2. Хеннекен, 1974, с. 181.
  3. Линник, 1960, с. 44—45.
  4. Хеннекен, 1974, с. 181—182.

Литература

  • Хеннекен П. Л., Тортра А. Теория вероятностей и некоторые её приложения. М.: Наука, 1974. — 472 с.
  • Ю. В. Линник. Разложения вероятностных законов. Л.: ЛГУ, 1960. — 263 с.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.