Теорема Ролля
Теорема Ро́лля (теорема о нуле производной) утверждает, что
Если вещественная функция, непрерывная на отрезке и дифференцируемая на интервале , принимает на концах отрезка одинаковые значения, то на интервале найдётся хотя бы одна точка, в которой производная функции равна нулю. |
Доказательство
Если функция на отрезке постоянна, то утверждение очевидно, поскольку производная функции равна нулю в любой точке интервала.
Если же нет, поскольку значения функции в граничных точках сегмента равны, то согласно теореме Вейерштрасса, она принимает своё наибольшее или наименьшее значение в некоторой точке интервала, то есть имеет в этой точке локальный экстремум, и по лемме Ферма производная в этой точке равна 0.
Геометрический смысл
Теорема утверждает, что если ординаты обоих концов гладкой кривой равны, то на кривой найдется точка, в которой касательная к кривой параллельна оси абсцисс.
Следствия
Если дифференцируемая функция обращается в ноль в различных точках, то её производная обращается в ноль по крайней мере в различных точках[1], причем эти нули производной лежат в выпуклой оболочке нулей исходной функции. Это следствие легко проверяется для случая действительных корней, однако имеет место и в комплексном случае.
Если все корни многочлена n-ой степени действительные, то и корни всех его производных до включительно — также исключительно действительные.
Дифференцируемая функция на отрезке между двумя своими точками имеет касательную, параллельную секущей/хорде, проведённой через эти две точки.
См. также
- Обобщённая теорема Ролля
- Формула конечных приращений
- Теорема Коши о среднем значении
- Ролль, Мишель
Примечания
- Бахвалов Н. С., Жидков Н. П., Кобельков Г. М. — Численные методы, стр.43
Литература
Фихтенгольц Г. М. Основы математического анализа. — М.: «Наука», 1962. — Т. 1. — С. 225. — 607 с.