Теорема Вивиани

Теорема Вивиани — утверждение в геометрии треугольника, согласно которому сумма расстояний от произвольной точки внутри равностороннего треугольника до его сторон постоянна и равна высоте треугольника. Названа по имени итальянского математика Винченцо Вивиани.

Сумма длин отрезков равна высоте равностороннего треугольника.

В части постоянства суммы расстояний от произвольной внутренней точки до сторон утверждение может быть обобщено на равносторонние многоугольники и многоугольники с равными углами[1].

Доказательство

Теорема может быть доказана путём сравнения площадей треугольников. Пусть  — равносторонний треугольник, в котором  — высота,  — длина каждой из сторон. Точка выбирается произвольно внутри треугольника, и тогда , ,  — расстояния от точки до сторон треугольника. Тогда площадь можно определить следующим образом:

,

из чего вытекают следующие соотношения:

,

то есть:

.

Приложения

Треугольник взрываемости тройной смеси метан-кислород-азот. Синяя прямая соответствует смесям метана с воздухом, красная линия отвечает стехиометрическому составу.
ВПВ — верхний предел взрываемости;
НПВ — нижний предел взрываемости;
ПК — пороговая концентрация взрываемости.

Теорема Вивиани позволяет получать координаты точек на трёхкомпонентные диаграммы путём проведения линий, параллельных сторонам равностороннего треугольника. В частности, таким образом можно строить диаграммы воспламеняемости.

В более общем случае, они позволяют таким же образом задавать координаты на правильном симплексе.

Примечания

Ссылки

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.