Соглашение Эйнштейна

В тензорном анализе, в частности в его приложениях к общей теории относительности, теории упругости и дифференциальной геометрии, при записи выражений из многокомпонентных величин, пронумерованных верхними и нижними индексами (тензоров), для экономии записи бывает удобно использовать правило, называемое соглашением Эйнштейна (также известно как «правило суммирования Эйнштейна»): если одна и та же буква в обозначении индекса встречается в одночлене и сверху, и снизу, то такой одночлен полагается просуммированным по всем значениям, которые может принимать этот индекс. Например, в выражении

индекс встречается и сверху, и снизу, поэтому это выражение считается эквивалентным сумме

Точнее

где  — размерность пространства, на котором определены и (здесь предполагается, что нумерация координат начинается с единицы).

Индекс, по которому проводится суммирование, называется немым; он может быть заменён любой буквой, при этом значение выражения, в которое он входит, не меняется (очевидно, что ). Если индекс не является немым (свободный индекс), он должен встречаться в одинаковом положении в обеих частях (не)равенства; фактически в этом случае одно выражение представляет собой систему выражений (равенств или неравенств), число которых равно sn, где s — количество свободных индексов. Например, если размерность n = 4, то выражение

с двумя свободными индексами k и l представляет собой краткую запись 42=16 равенств, в правой части каждого из которых стоит сумма четырёх произведений:

В случае использования выражений в виде дробей, таких как частные производные, верхние индексы, записываемые в знаменателе, считаются для применения правила как бы нижними и наоборот; например, выражение

записывается в виде

или в ещё более простом виде, когда запятая перед индексом обозначает частное дифференцирование по соответствующей координате:

В некоторых случаях[1] (если метрический тензор полагается всегда равным δik) верхние и нижние индексы в формулах не различают. В таком случае суммирование ведётся по любой паре повторяющихся индексов, встречающихся в одном и том же произведении тензоров. Например, в трёхмерном евклидовом пространстве

Используя стандартное соглашение Эйнштейна, следовало бы писать .

Примечания

  1. Например, в теории упругости. См. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика. Т. VII. Теория упругости. — М.: Наука, 1987.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.