Рекурсивный МНК

Рекурсивный или рекуррентный метод наименьших квадратов (МНК) (англ. Recursive Least Squares) — применяемая в эконометрике итеративная процедура оценки параметров регрессионной модели. Данный метод применяется при мультиколлинеарности факторов (в этом случае матрица близка к вырожденной и при её обращении могут возникнуть большие вычислительные неточности). Также получающиеся в результате применения рекурсивного МНК (рекурсивные остатки) используются при тестировании стабильности параметров модели.

Описание метода

В данном методе вместо обращения плохо обусловленной матрицы производится расчет матрицы согласно следующей рекуррентной формуле:

То есть на каждом шаге вместо обращения производится деление на число. Для «запуска» процедуры нужно задать начальное значение матрицы.

Параметры модели оцениваются согласно следующему рекуррентному соотношению:

Выражение в скобках представляет собой ошибку прогноза на один период. Известно, что дисперсия ошибки такого прогноза будет равна , где  — дисперсия случайных ошибок модели (предполагается классическая регрессионная модель). Для выравнивания дисперсии дисперсий ошибок прогнозов ошибки прогноза делят на квадратный корень из . Полученные величины и называют обычно рекурсивными остатками:

Если регрессионная модель правильная (то есть соответствует моделируемой зависимости) и выполняются классические предположения, то полученные рекурсивные остатки являются независимыми случайными величинами с нулевым математическим ожиданием и постоянной дисперсией — . Это позволяет использовать их для тестирования стабильности параметров модели.

См. также

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.